from builtins import int, str, super
import warnings
from collections.abc import Iterable
from collections import namedtuple
from ctypes import cast
from enum import Enum
from textwrap import dedent
from ..tecutil import _tecutil
from ..constant import *
from ..exception import *
from ..tecutil import Index, IndexSet, color_spec, flatten_args, sv
from .. import session, tecutil
from . import symbol
[docs]
class FieldmapContour(session.SubStyle):
"""Style control for flooding and contour lines.
This object controls which contour groups are associated with flooding,
line placement and line coloring. Three different contour groups may be
used though there are eight total groups that can be configured in a single
plot. In this example, we flood by the first contour group (index: 0):
.. code-block:: python
import numpy as np
import tecplot as tp
from tecplot.constant import *
from tecplot.data.operate import execute_equation
# Get the active frame, setup a grid (30x30x30)
# where each dimension ranges from 0 to 30.
# Add variables P,Q,R to the dataset and give
# values to the data.
frame = tp.active_frame()
dataset = frame.dataset
for v in ['X','Y','Z','P','Q','R']:
dataset.add_variable(v)
zone = dataset.add_ordered_zone('Zone', (30,30,30))
xx = np.linspace(0,30,30)
for v,arr in zip(['X','Y','Z'],np.meshgrid(xx,xx,xx)):
zone.values(v)[:] = arr.ravel()
execute_equation('{P} = -10 * {X} + {Y}**2 + {Z}**2')
execute_equation('{Q} = {X} - 10 * {Y} - {Z}**2')
execute_equation('{R} = {X}**2 + {Y}**2 - {Z} ')
# Enable 3D field plot and turn on contouring
# with boundary faces
frame.plot_type = PlotType.Cartesian3D
plot = frame.plot()
srf = plot.fieldmap(0).surfaces
srf.surfaces_to_plot = SurfacesToPlot.BoundaryFaces
plot.show_contour = True
# get the contour group associated with the
# newly created zone
contour = plot.fieldmap(dataset.zone('Zone')).contour
# assign flooding to the first contour group
contour.flood_contour_group = plot.contour(0)
contour.flood_contour_group.variable = dataset.variable('P')
contour.flood_contour_group.colormap_name = 'Sequential - Yellow/Green/Blue'
contour.flood_contour_group.legend.show = False
# save image to PNG file
tp.export.save_png('fieldmap_contour.png', 600, supersample=3)
.. figure:: /_static/images/fieldmap_contour.png
:width: 300px
:figwidth: 300px
"""
def __init__(self, fieldmap):
super().__init__(fieldmap, sv.CONTOUR)
@property
def show(self):
"""`bool`: Enable drawing the contours.
Example usage::
>>> contour = plot.fieldmap(0).contour
>>> contour.show = True
"""
return self._get_style(bool, sv.SHOW)
@show.setter
def show(self, value):
self._set_style(bool(value), sv.SHOW)
@property
def contour_type(self):
"""`ContourType`: `ContourType` to plot.
Possible values are:
`ContourType.Flood` (default)
Filled color between the contour levels.
`ContourType.Lines`
Lines only.
`ContourType.Overlay`
Lines overlayed on flood.
`ContourType.AverageCell`
Filled color by the average value within cells.
`ContourType.PrimaryValue`
Filled color by the value at the primary corner of the cells.
In this example, we enable both flooding and contour lines::
>>> from tecplot.constant import ContourType
>>> contour = plot.fieldmap(0).contour
>>> contour.contour_type = ContourType.Overlay
"""
return self._get_style(ContourType, sv.CONTOURTYPE)
@contour_type.setter
def contour_type(self, value):
self._set_style(ContourType(value), sv.CONTOURTYPE)
@property
def flood_contour_group_index(self):
"""`int`: Zero-based `Index` of the `ContourGroup` to use for flooding.
This property sets and gets, by `Index`, the `ContourGroup` used for
flooding. Changing style on this `ContourGroup` will affect all other
fieldmaps on the same `Frame <layout.Frame>` that use it. Example usage::
>>> contour = plot.fieldmap(0).contour
>>> contour.flood_contour_group_index = 1
>>> contour.flood_contour_group.variable = dataset.variable('P')
.. note::
To set the flood contour to RGB (multivariate) coloring, you must
set the `FieldmapContour.flood_contour_group` property to
``plot.rgb_coloring``. See
`FieldmapContour.flood_contour_group` for more details.
"""
return self._get_style(Index, sv.FLOODCOLORING)
@flood_contour_group_index.setter
def flood_contour_group_index(self, index):
self._set_style(Index(index), sv.FLOODCOLORING)
@property
def flood_contour_group(self):
"""`ContourGroup` or `RGBColoring`: The `ContourGroup` to use
for flooding.
This property sets and gets the `ContourGroup` used for flooding.
Changing style on this `ContourGroup` will affect all other fieldmaps
on the same `Frame <layout.Frame>` that use it. Example usage::
>>> cmap_name = 'Sequential - Yellow/Green/Blue'
>>> contour = plot.fieldmap(0).contour
>>> contour.flood_contour_group = plot.contour(1)
>>> contour.flood_contour_group.variable = dataset.variable('P')
>>> contour.flood_contour_group.colormap_name = cmap_name
Setting this to the `RGBColoring` instance floods this fieldmap contour
by the plot's RGB coloring settings. This requires that variables are
assigned to the red, green and blue color channels::
>>> plot.rgb_coloring.red_variable = dataset.variable('x')
>>> plot.rgb_coloring.green_variable = dataset.variable('y')
>>> plot.rgb_coloring.blue_variable = dataset.variable('z')
>>> contour = plot.fieldmap(0).contour
>>> contour.flood_contour_group = plot.rgb_coloring
See `RGBColoring` for more details.
"""
def contour(plot, i):
if i == ContourColoring.RGB.value - 1:
return plot.rgb_coloring
else:
return plot.contour(i)
index = self.flood_contour_group_index
if isinstance(index, Iterable):
return tuple([contour(self.parent.plot, i) for i in index])
else:
return contour(self.parent.plot, index)
@flood_contour_group.setter
def flood_contour_group(self, contour_group):
if isinstance(contour_group,
type(self.parent.plot.rgb_coloring)):
self.flood_contour_group_index = ContourColoring.RGB.value - 1
else:
self.flood_contour_group_index = contour_group.index
@property
def line_group_index(self):
"""`int`: Zero-based `Index` of the `ContourGroup` for contour lines.
This property sets and gets, by `Index`, the `ContourGroup` used for
line placement and though all properties of the `ContourGroup` can be
manipulated through this object, many of them such as color will not
affect the lines unless the `FieldmapContour.line_color` is set to the
same `ContourGroup`. Note that changing style on this `ContourGroup`
will affect all other fieldmaps on the same `Frame <layout.Frame>` that use it.
Example usage::
>>> contour = plot.fieldmap(0).contour
>>> contour.line_group_index = 2
>>> contour.line_group.variable = dataset.variable('Z')
"""
return self._get_style(Index, sv.LINECONTOURGROUP)
@line_group_index.setter
def line_group_index(self, index):
self._set_style(Index(index), sv.LINECONTOURGROUP)
@property
def line_group(self):
"""`ContourGroup`: `ContourGroup` to use for line placement and style.
This property sets and gets the `ContourGroup` used for line placement
and though all properties of the `ContourGroup` can be manipulated
through this object, many of them such as color will not effect the
lines unless the `FieldmapContour.line_color` is set to the same
`ContourGroup`. Note that changing style on this `ContourGroup` will
affect all other fieldmaps on the same `Frame <layout.Frame>` that use it. Example
usage::
>>> contour = plot.fieldmap(0).contour
>>> contour.line_group = plot.contour(2)
>>> contour.line_group.variable = dataset.variable('Z')
"""
index = self.line_group_index
if isinstance(index, Iterable):
return tuple([self.parent.plot.contour(i) for i in index])
else:
return self.parent.plot.contour(index)
@line_group.setter
def line_group(self, contour_group):
self.line_group_index = contour_group.index
@property
def line_color(self):
"""`Color` or `ContourGroup`: The `Color` or `ContourGroup` for lines.
FieldmapContour lines can be a solid color or be colored by a
`ContourGroup` as obtained through the ``plot.contour`` property. Note
that changing style on this `ContourGroup` will affect all other
fieldmaps on the same `Frame <layout.Frame>` that use it. Example usage::
>>> from tecplot.constant import Color
>>> contour = plot.fieldmap(1).contour
>>> contour.line_color = Color.Blue
Example of setting the color from a `ContourGroup`::
>>> contour = plot.fieldmap(0).contour
>>> contour.line_color = plot.contour(1)
>>> contour.line_color.variable = dataset.variable('P')
Setting this to the `RGBColoring` instance colors the lines by
the plot's multivariate contour settings. This requires that variables
are assigned to the red, green and blue color channels::
>>> plot.rgb_coloring.red_variable = dataset.variable('x')
>>> plot.rgb_coloring.green_variable = dataset.variable('y')
>>> plot.rgb_coloring.blue_variable = dataset.variable('z')
>>> plot.fieldmap(0).contour.line_color = plot.rgb_coloring
See `RGBColoring` for more details.
"""
return color_spec(self._get_style(Color, sv.COLOR), self.parent.plot)
@line_color.setter
def line_color(self, value):
self._set_style(color_spec(value), sv.COLOR)
@property
def line_pattern(self):
"""`LinePattern`: `LinePattern` type to use for contour lines.
Possible values: `Solid <LinePattern.Solid>`, `Dashed`, `DashDot`,
`Dotted`, `LongDash`, `DashDotDot`.
Example usage::
>>> from tecplot.constant import LinePattern
>>> contour = plot.fieldmap(0).contour
>>> contour.line_pattern = LinePattern.DashDotDot
"""
return self._get_style(LinePattern, sv.LINEPATTERN)
@line_pattern.setter
def line_pattern(self, value):
self._set_style(LinePattern(value), sv.LINEPATTERN)
@property
def line_thickness(self):
"""`float`: Thickness (`float`) of the drawn lines.
This is the line thickness in percentage of the `Frame <layout.Frame>`'s height.
Example usage::
>>> contour = plot.fieldmap(0).contour
>>> contour.line_thickness = 0.7
"""
return self._get_style(float, sv.LINETHICKNESS)
@line_thickness.setter
def line_thickness(self, value):
self._set_style(float(value), sv.LINETHICKNESS)
@property
def pattern_length(self):
"""`float`: Length (`float`) of the pattern segment for non-solid lines.
This is the pattern length in percentage of the `Frame <layout.Frame>`'s height.
Example usage::
>>> contour = plot.fieldmap(0).contour
>>> contour.pattern_length = 3.5
"""
return self._get_style(float, sv.PATTERNLENGTH)
@pattern_length.setter
def pattern_length(self, value):
self._set_style(float(value), sv.PATTERNLENGTH)
@property
def use_lighting_effect(self):
"""`bool`: Enable lighting effect on this contour.
Example usage::
>>> contour = plot.fieldmap(0).contour
>>> contour.use_lighting_effect = False
"""
return self._get_style(bool, sv.USELIGHTINGEFFECT)
@use_lighting_effect.setter
def use_lighting_effect(self, value):
self._set_style(bool(value), sv.USELIGHTINGEFFECT)
[docs]
class FieldmapEdge(session.SubStyle):
"""Volume boundary lines.
An edge plot layer displays the connections of the outer lines
(``IJ``-ordered zones), finite element surface zones, or planes
(``IJK``-ordered zones). The FieldmapEdge layer allows you to display the
edges (creases and borders) of your data. Zone edges exist only for ordered
zones or 2D finite element zones. Three-dimensional finite element zones do
not have boundaries:
.. code-block:: python
:emphasize-lines: 15,26-29
import os
import tecplot as tp
from tecplot.constant import Color, EdgeType, PlotType, SurfacesToPlot
examples_dir = tp.session.tecplot_examples_directory()
datafile = os.path.join(examples_dir, 'SimpleData', 'F18.plt')
dataset = tp.data.load_tecplot(datafile)
frame = dataset.frame
# Enable 3D field plot, turn on contouring and translucency
frame.plot_type = PlotType.Cartesian3D
plot = frame.plot()
plot.show_contour = True
plot.show_edge = True
contour = plot.contour(0)
contour.colormap_name = 'Sequential - Blue'
contour.variable = dataset.variable('S')
# adjust effects for every fieldmap in this dataset
fmaps = plot.fieldmaps()
fmaps.contour.flood_contour_group = contour
fmaps.surfaces.surfaces_to_plot = SurfacesToPlot.BoundaryFaces
edge = fmaps.edge
edge.edge_type = EdgeType.Creases
edge.color = Color.RedOrange
edge.line_thickness = 0.7
# ensure consistent output between interactive (connected) and batch
plot.contour(0).levels.reset_to_nice()
# save image to file
tp.export.save_png('fieldmap_edge.png', 600, supersample=3)
.. figure:: /_static/images/fieldmap_edge.png
:width: 300px
:figwidth: 300px
"""
def __init__(self, fieldmap):
super().__init__(fieldmap, sv.EDGELAYER)
@property
def show(self):
"""`bool`: Draw the mesh for this fieldmap.
Example usage::
>>> plot.show_edge = True
>>> plot.fieldmap(0).edge.show = True
"""
return self._get_style(bool, sv.SHOW)
@show.setter
def show(self, value):
self._set_style(bool(value), sv.SHOW)
@property
def edge_type(self):
"""`EdgeType`: Where to draw edge lines.
Possible values: `Borders`, `Creases`, `BordersAndCreases`.
Example usage::
>>> from tecplot.constant import EdgeType
>>> plot.show_edge = True
>>> plot.fieldmap(0).edge.edge_type = EdgeType.Creases
"""
return self._get_style(EdgeType, sv.EDGETYPE)
@edge_type.setter
def edge_type(self, value):
self._set_style(EdgeType(value), sv.EDGETYPE)
@property
def color(self):
"""`Color`: Line `Color`.
"""
return self._get_style(Color, sv.COLOR)
@color.setter
def color(self, value):
self._set_style(Color(value), sv.COLOR)
@property
def line_thickness(self):
"""`float`: Thickness of the edge lines drawn.
This is the line thickness in percentage of `Frame <layout.Frame>` height. Example
usage::
>>> plot.fieldmap(0).edge.line_thickness = 0.4
"""
return self._get_style(float, sv.LINETHICKNESS)
@line_thickness.setter
def line_thickness(self, value):
self._set_style(float(value), sv.LINETHICKNESS)
@property
def i_border(self):
"""`BorderLocation`: Which border lines to draw in the ``I``-dimension.
Possible values: `None`, `Min <BorderLocation.Min>`, `Max
<BorderLocation.Max>`, `Both <BorderLocation.Both>`.
Example usage::
>>> from tecplot.constant import BorderLocation
>>> plot.show_edge = True
>>> plot.fieldmap(0).edge.i_border = BorderLocation.Min
"""
value = self._get_style(BorderLocation, sv.IBORDER)
return None if value is BorderLocation.None_ else value
@i_border.setter
def i_border(self, value):
if value is None:
value = BorderLocation.None_
self._set_style(BorderLocation(value), sv.IBORDER)
@property
def j_border(self):
"""`BorderLocation`: Which border lines to draw in the ``J``-dimension.
Possible values: `None`, `Min <BorderLocation.Min>`, `Max
<BorderLocation.Max>`, `Both <BorderLocation.Both>`.
Example usage::
>>> from tecplot.constant import BorderLocation
>>> plot.show_edge = True
>>> plot.fieldmap(0).edge.j_border = BorderLocation.Both
"""
value = self._get_style(BorderLocation, sv.JBORDER)
return None if value is BorderLocation.None_ else value
@j_border.setter
def j_border(self, value):
if value is None:
value = BorderLocation.None_
self._set_style(BorderLocation(value), sv.JBORDER)
@property
def k_border(self):
"""`BorderLocation`: Which border lines to draw in the ``K``-dimension.
Possible values: `None`, `Min <BorderLocation.Min>`, `Max
<BorderLocation.Max>`, `Both <BorderLocation.Both>`.
Example usage::
>>> from tecplot.constant import BorderLocation
>>> plot.show_edge = True
>>> plot.fieldmap(0).edge.k_border = None
"""
value = self._get_style(BorderLocation, sv.KBORDER)
return None if value is BorderLocation.None_ else value
@k_border.setter
def k_border(self, value):
if value is None:
value = BorderLocation.None_
self._set_style(BorderLocation(value), sv.KBORDER)
[docs]
class FieldmapMesh(session.SubStyle):
"""Lines connecting neighboring data points.
The mesh plot layer displays the lines connecting neighboring data points
within a `Zone <data_access>`. For ``I``-ordered data, the mesh is a single
line connecting all of the points in order of increasing ``I``-index. For
``IJ``-ordered data, the mesh consists of two families of lines connecting
adjacent data points of increasing ``I``-index and increasing ``J``-index.
For ``IJK``-ordered data, the mesh consists of three families of lines, one
connecting points of increasing ``I``-index, one connecting points of
increasing ``J``-index, and one connecting points of increasing
``K``-index. For finite element zones, the mesh is a plot of every edge of
all of the elements that are defined by the connectivity list for the node
points:
.. code-block:: python
:emphasize-lines: 22-24
from os import path
import numpy as np
import tecplot as tp
from tecplot.constant import PlotType, MeshType
examples_dir = tp.session.tecplot_examples_directory()
infile = path.join(examples_dir, 'SimpleData', 'F18.plt')
dataset = tp.data.load_tecplot(infile)
# Enable 3D field plot and turn on contouring
frame = tp.active_frame()
frame.plot_type = PlotType.Cartesian3D
plot = frame.plot()
plot.show_mesh = True
contour = plot.contour(0)
contour.variable = dataset.variable('S')
contour.colormap_name = 'Doppler'
contour.levels.reset_levels(np.linspace(0.02,0.12,11))
# set the mesh type and color for all zones
mesh = plot.fieldmaps().mesh
mesh.mesh_type = MeshType.HiddenLine
mesh.color = contour
# save image to file
tp.export.save_png('fieldmap_mesh.png', 600, supersample=3)
.. figure:: /_static/images/fieldmap_mesh.png
:width: 300px
:figwidth: 300px
"""
def __init__(self, fieldmap):
super().__init__(fieldmap, sv.MESH)
@property
def show(self):
"""`bool`: Draw the mesh for this fieldmap.
Example usage::
>>> from tecplot.constant import SurfacesToPlot
>>> plot.show_mesh = True
>>> surfaces = plot.fieldmap(0).surfaces
>>> surfaces.surfaces_to_plot = SurfacesToPlot.IPlanes
>>> plot.fieldmap(0).mesh.show = True
"""
return self._get_style(bool, sv.SHOW)
@show.setter
def show(self, value):
self._set_style(bool(value), sv.SHOW)
@property
def mesh_type(self):
"""`MeshType`: `MeshType` to show.
Possible values:
`Wireframe <MeshType.Wireframe>`
Wire frame meshes are drawn below any other zone layers on the same
zone. In 3D Cartesian plots, no hidden lines are removed. For 3D
volume zones (finite element volume or IJK-ordered), the full 3D
mesh (consisting of all the connecting lines between data points)
is not generally drawn because the sheer number of lines would make
it confusing. The mesh drawn will depend on `FieldmapSurfaces`
which can be obtained through the parent fieldmap with
``mesh.fieldmap.surfaces``::
from tecplot.constant import MeshType, SurfacesToPlot
mesh = plot.fieldmap(0).mesh
mesh.mesh_type = MeshType.Wireframe
surfaces = mesh.fieldmap.surfaces
surfaces.surfaces_to_plot = SurfacesToPlot.IPlanes
By default, only the mesh on exposed cell faces is shown.
`Overlay <MeshType.Overlay>`
Similar to Wire Frame, mesh lines are drawn over all other zone
layers except for vectors and scatter symbols. In 3D Cartesian
plots, the area behind the cells of the plot is still visible
(unless another plot type such as contour flooding prevents this).
As with Wire Frame, the mesh drawn will depend on
`FieldmapSurfaces` which can be obtained through the parent
fieldmap with ``mesh.fieldmap.surfaces``.
`HiddenLine <MeshType.HiddenLine>`
Similar to Overlay, except hidden lines are removed from behind the
mesh. In effect, the cells (elements) of the mesh are opaque.
FieldmapSurfaces and lines that are hidden behind another surface
are removed from the plot. For 3D volume zones, using this plot
type obscures everything inside the zone. If you choose this option
for 3D volume zones, then choosing to plot every surface with::
from tecplot.constant import HiddenLine, SurfacesToPlot
mesh = plot.fieldmap(0).mesh
mesh.mesh_type = MeshType.HiddenLine
surfaces = mesh.fieldmap.surfaces
surfaces.surfaces_to_plot = SurfacesToPlot.All
has the same effect as plotting only exposed cell faces with::
surfaces.surfaces_to_plot = SurfacesToPlot.ExposedCellFaces
but is much slower.
"""
return self._get_style(MeshType, sv.MESHTYPE)
@mesh_type.setter
def mesh_type(self, value):
self._set_style(MeshType(value), sv.MESHTYPE)
@property
def color(self):
"""`Color` or `ContourGroup`: The `Color` or `ContourGroup` for lines.
FieldmapContour lines can be a solid color or be colored by a
`ContourGroup` as obtained through the ``plot.contour`` property. Note
that changing style on this `ContourGroup` will affect all other
fieldmaps on the same `Frame <layout.Frame>` that use it. Example usage::
>>> from tecplot.constant import Color
>>> plot.fieldmap(1).mesh.color = Color.Blue
Example of setting the color from a `ContourGroup`::
>>> plot.fieldmap(1).mesh.color = plot.contour(1)
"""
return color_spec(self._get_style(Color, sv.COLOR), self.parent.plot)
@color.setter
def color(self, value):
self._set_style(color_spec(value), sv.COLOR)
@property
def line_pattern(self):
"""`LinePattern`: `LinePattern` type to use for mesh lines.
Possible values: `Solid <LinePattern.Solid>`, `Dashed`, `DashDot`,
`Dotted`, `LongDash`, `DashDotDot`.
Example usage::
>>> from tecplot.constant import LinePattern
>>> mesh = plot.fieldmap(0).mesh
>>> mesh.line_pattern = LinePattern.Dashed
"""
return self._get_style(LinePattern, sv.LINEPATTERN)
@line_pattern.setter
def line_pattern(self, value):
self._set_style(LinePattern(value), sv.LINEPATTERN)
@property
def line_thickness(self):
"""`float`: Thickness (`float`) of the drawn lines.
This is the line thickness in percentage of the `Frame <layout.Frame>`'s height.
Example usage::
>>> plot.fieldmap(0).mesh.line_thickness = 0.7
"""
return self._get_style(float, sv.LINETHICKNESS)
@line_thickness.setter
def line_thickness(self, value):
self._set_style(float(value), sv.LINETHICKNESS)
@property
def pattern_length(self):
"""`float`: Length (`float`) of the pattern segment for non-solid lines.
This is the pattern length in percentage of the `Frame <layout.Frame>`'s height.
Example usage::
>>> plot.fieldmap(0).mesh.pattern_length = 3.5
"""
return self._get_style(float, sv.PATTERNLENGTH)
@pattern_length.setter
def pattern_length(self, value):
self._set_style(float(value), sv.PATTERNLENGTH)
[docs]
class FieldmapPoints(session.SubStyle):
"""Type and density of the points used for vector and scatter plots.
This object controls the location of the points for `FieldmapVector` and
`FieldmapScatter` plots relative to the cells:
.. code-block:: python
:emphasize-lines: 17-19
from os import path
import tecplot as tp
from tecplot.constant import PlotType, PointsToPlot
examples_dir = tp.session.tecplot_examples_directory()
infile = path.join(examples_dir, 'SimpleData', 'HeatExchanger.plt')
dataset = tp.data.load_tecplot(infile)
# Enable 3D field plot and turn on contouring
frame = tp.active_frame()
frame.plot_type = PlotType.Cartesian2D
plot = frame.plot()
plot.vector.u_variable = dataset.variable('U(M/S)')
plot.vector.v_variable = dataset.variable('V(M/S)')
plot.show_vector = True
points = plot.fieldmaps().points
points.points_to_plot = PointsToPlot.SurfaceCellCenters
points.step = (2,2)
# save image to file
tp.export.save_png('fieldmap_points.png', 600, supersample=3)
.. figure:: /_static/images/fieldmap_points.png
:width: 300px
:figwidth: 300px
"""
def __init__(self, fieldmap):
super().__init__(fieldmap, sv.POINTS)
@property
def points_to_plot(self):
"""`PointsToPlot`: Location of the points to show.
Possible values:
`SurfaceNodes`
Draws only the nodes that are on the surface of the `Zone
<data_access>`.
`AllNodes`
Draws all nodes in the `Zone <data_access>`.
`SurfaceCellCenters`
Draws points at the cell centers which are on or near the surface
of the `Zone <data_access>`.
`AllCellCenters`
Draws points at all cell centers in the `Zone <data_access>`.
`AllConnected`
Draws all the nodes that are connected by the node map. Nodes
without any connectivity are not drawn.
Example usage::
>>> from tecplot.constant import PointsToPlot
>>> pts = plot.fieldmap(0).points
>>> sts.points_to_plot = PointsToPlot.SurfaceCellCenters
"""
return self._get_style(PointsToPlot, sv.POINTSTOPLOT)
@points_to_plot.setter
def points_to_plot(self, points):
self._set_style(PointsToPlot(points), sv.POINTSTOPLOT)
@property
def step(self):
"""`tuple`: Step along the dimensions ``(I, J, K)``.
This property specifies the ``I``, ``J``, and ``K``-step intervals. For
irregular and finite element data, only the first parameter or
``I``-Step has an effect. This steps through the nodes in the order
they are listed in the data file. In this case, a single number can be
given, but note that the return type is always a 3-`tuple` for both
ordered and irregular data.
Example for ``IJK`` ordered data::
>>> plot.fieldmap(0).points.step = (10,10,None)
>>> print(plot.fieldmap(0).points.step)
(10, 10, 1)
Example for irregular data::
>>> plot.fieldmap(0).points.step = 10
>>> print(plot.fieldmap(0).points.step)
(10, 1, 1)
"""
return session.IJK(self, sv.IJKSKIP)
@step.setter
def step(self, *values):
values = tecutil.flatten_args(*values)
session.IJK(self, sv.IJKSKIP)[:] = [int(v or 1) for v in values]
[docs]
class FieldmapScatter(session.SubStyle):
"""Plot of nodes using symbols.
`FieldmapScatter` plots display symbols at the data points in a field. The
symbols may be sized according to the values of a specified variable,
colored by the values of the contour variable, or may be uniformly sized or
colored. Unlike contour plots, scatter plots do not require any mesh
structure connecting the points, allowing scatter plots of irregular data:
.. code-block:: python
:emphasize-lines: 14-18
from os import path
import tecplot as tp
from tecplot.constant import PlotType, SymbolType, FillMode
examples_dir = tp.session.tecplot_examples_directory()
infile = path.join(examples_dir, 'SimpleData', 'HeatExchanger.plt')
dataset = tp.data.load_tecplot(infile)
frame = tp.active_frame()
frame.plot_type = PlotType.Cartesian2D
plot = frame.plot()
plot.show_scatter = True
scatter = plot.fieldmaps().scatter
scatter.symbol_type = SymbolType.Geometry
scatter.fill_mode = FillMode.UseSpecificColor
scatter.fill_color = plot.contour(0)
scatter.size = 1
# ensure consistent output between interactive (connected) and batch
plot.contour(0).levels.reset_to_nice()
tp.export.save_png('fieldmap_scatter.png', 600, supersample=3)
.. figure:: /_static/images/fieldmap_scatter.png
:width: 300px
:figwidth: 300px
"""
def __init__(self, fieldmap):
super().__init__(fieldmap, sv.SCATTER)
@property
def show(self):
"""`bool`: Show the scatter symbols.
Example usage::
>>> plot.show_scatter = True
>>> plot.fieldmap(2).scatter.show = True
"""
return self._get_style(bool, sv.SHOW)
@show.setter
def show(self, value):
self._set_style(bool(value), sv.SHOW)
@property
def symbol_type(self):
"""`SymbolType`: The `SymbolType` to use for this scatter plot.
Possible values are `SymbolType.Geometry` or `SymbolType.Text`. Example
usage::
>>> from tecplot.constant import SymbolType
>>> plot.fieldmap(0).scatter.symbol_type = SymbolType.Text
"""
return symbol.Symbol(self)._symbol_type
@symbol_type.setter
def symbol_type(self, value):
symbol.Symbol(self)._symbol_type = value
[docs]
def symbol(self, symbol_type=None):
"""Returns a scatter symbol style object.
Parameters:
symbol_type (`SymbolType`, optional): The type of symbol to return.
By default, this will return the active symbol type which is
obtained from `FieldmapScatter.symbol_type`.
Returns: `TextScatterSymbol` or `GeometryScatterSymbol`
Example usage::
>>> from tecplot.constant import SymbolType
>>> plot.fieldmap(0).scatter.symbol_type = SymbolType.Text
>>> symbol = plot.fieldmap(0).scatter.symbol()
>>> symbol.text = 'a'
"""
_dispatch = {
SymbolType.Text: symbol.TextScatterSymbol,
SymbolType.Geometry: symbol.GeometryScatterSymbol}
if symbol_type is None:
symbol_type = self.symbol_type
if isinstance(symbol_type, Iterable):
if not all(t is symbol_type[0] for t in symbol_type):
msg = 'Fieldmap scatter symbols are not all the same type'
raise TecplotLogicError(msg)
symbol_type = symbol_type[0]
return _dispatch[symbol_type](self)
@property
def size(self):
"""`float`: Size of the symbols to draw.
Example usage::
>>> plot.fieldmap(0).scatter.size = 4
"""
return self._get_style(float, sv.FRAMESIZE)
@size.setter
def size(self, value):
self._set_style(float(value), sv.FRAMESIZE)
@property
def size_by_variable(self):
"""`bool`: Use a variable to determine relative size of symbols.
Example usage::
>>> plot.scatter.variable = dataset.variable('P')
>>> plot.fieldmap(0).scatter.size_by_variable = True
.. seealso:: `Scatter.variable`
"""
return self._get_style(bool, sv.SIZEBYVARIABLE)
@size_by_variable.setter
def size_by_variable(self, value):
try:
self._set_style(bool(value), sv.SIZEBYVARIABLE)
except TecplotSystemError as e:
if str(e) == str(SetValueReturnCode.ContextError1):
msg = dedent('''\
A scatter variable must be set using the
plot.scatter.variable property.''')
raise TecplotLogicError(msg)
else:
raise
@property
def line_thickness(self):
"""`float`: Width of the lines when drawing symbols.
Example usage::
>>> from tecplot.constant import SymbolType
>>> scatter = plot.fieldmap(0).scatter
>>> scatter.symbol_type = SymbolType.Geometry
>>> scatter.line_thickness = 1
"""
return self._get_style(float, sv.LINETHICKNESS)
@line_thickness.setter
def line_thickness(self, value):
self._set_style(float(value), sv.LINETHICKNESS)
@property
def color(self):
"""`Color` or `ContourGroup`: Line `Color` or `ContourGroup` of the drawn symbols.
This can be a solid color or a `ContourGroup` as obtained through the
``plot.contour`` property. Note that changing style on the
`ContourGroup` will affect all other fieldmaps in the same `Frame <layout.Frame>` that
use it. Example usage::
>>> from tecplot.constant import Color
>>> plot.fieldmap(1).scatter.color = Color.Blue
Example of setting the color from a `ContourGroup`::
>>> plot.fieldmap(1).scatter.color = plot.contour(1)
"""
return color_spec(self._get_style(Color, sv.COLOR),
self.parent.plot)
@color.setter
def color(self, value):
self._set_style(color_spec(value), sv.COLOR)
@property
def fill_mode(self):
"""`FillMode`: Mode for the background color.
Options include: `FillMode.UseSpecificColor`, `FillMode.UseLineColor`,
`FillMode.UseBackgroundColor` and `FillMode.None_`.
Example usage::
>>> from tecplot.constant import Color, SymbolType, FillMode
>>> scatter = plot.fieldmap(0).scatter
>>> scatter.symbol_type = SymbolType.Geometry
>>> scatter.fill_mode = FillMode.UseSpecificColor
>>> scatter.fill_color = Color.Red
"""
return self._get_style(FillMode, sv.FILLMODE)
@fill_mode.setter
def fill_mode(self, value):
self._set_style(FillMode(value), sv.FILLMODE)
@property
def fill_color(self):
"""`Color` or `ContourGroup`: Fill or background color.
The ``fill_mode`` attribute must be set accordingly::
>>> from tecplot.constant import Color, SymbolType, FillMode
>>> scatter = plot.fieldmap(0).scatter
>>> scatter.symbol_type = SymbolType.Geometry
>>> scatter.fill_mode = FillMode.UseSpecificColor
>>> scatter.fill_color = Color.Red
"""
return color_spec(self._get_style(Color, sv.FILLCOLOR),
self.parent.plot)
@fill_color.setter
def fill_color(self, value):
self._set_style(color_spec(value), sv.FILLCOLOR)
[docs]
class FieldmapSurfaces(session.SubStyle):
"""Plot surfaces from volume data.
This class controls viewing volume data as surfaces, either via a boundary
surface or one or more planes along the ``I``, ``J``, ``K`` dimensions for
ordered data:
.. code-block:: python
:emphasize-lines: 34,40,43
import numpy as np
import tecplot as tp
from tecplot.constant import *
from tecplot.data.operate import execute_equation
# Get the active frame, setup a grid (30x30x30)
# where each dimension ranges from 0 to 30.
# Add variable P to the dataset and give
# values to the data.
frame = tp.active_frame()
dataset = frame.dataset
for v in ['X','Y','Z','P']:
dataset.add_variable(v)
zone = dataset.add_ordered_zone('Zone', (30,30,30))
xx = np.linspace(0,30,30)
for v,arr in zip(['X','Y','Z'],np.meshgrid(xx,xx,xx)):
zone.values(v)[:] = arr.ravel()
execute_equation('{P} = -10*{X} + {Y}**2 + {Z}**2')
# Enable 3D field plot and turn on contouring
frame.plot_type = PlotType.Cartesian3D
plot = frame.plot()
plot.show_contour = True
# get a handle of the fieldmap for this zone
fmap = plot.fieldmap(dataset.zone('Zone'))
# set the active contour group to flood by variable P
fmap.contour.flood_contour_group.variable = dataset.variable('P')
plot.contour(0).levels.reset_to_nice()
# show I and J-planes through the surface
fmap.surfaces.surfaces_to_plot = SurfacesToPlot.IJPlanes
# show only the first and last I-planes
# min defaults to 0, max defaults to -1
# we set step to -1 which is equivalent
# to the I-dimensions's max
fmap.surfaces.i_range = None,None,-1
# show J-planes at indices: [5, 15, 25]
fmap.surfaces.j_range = 5,25,10
# save image to file
tp.export.save_png('fieldmap_surfaces_ij.png', 600, supersample=3)
.. figure:: /_static/images/fieldmap_surfaces_ij.png
:width: 300px
:figwidth: 300px
"""
def __init__(self, fieldmap):
super().__init__(fieldmap, sv.SURFACES)
@property
def surfaces_to_plot(self):
"""`SurfacesToPlot`: The surfaces to show.
Possible values: `BoundaryFaces`, `ExposedCellFaces`, `IPlanes
<SurfacesToPlot.IPlanes>`, `JPlanes <SurfacesToPlot.JPlanes>`, `KPlanes
<SurfacesToPlot.KPlanes>`, `IJPlanes`, `JKPlanes`, `IKPlanes`,
`IJKPlanes`, `All <SurfacesToPlot.All>`, the python built-in `None`.
Options such as `IJKPlanes` show planes from multiple dimensions. For
example, the `IJPlanes` value shows both the ``I``-planes and the
``J``-planes. The following example shows a 3D field plot using faces
on the boundary::
>>> from tecplot.constant import SurfacesToPlot
>>> frame.plot_type = PlotType.Cartesian3D
>>> srf = frame.plot().fieldmap(0).surfaces
>>> srf.surfaces_to_plot = SurfacesToPlot.BoundaryFaces
"""
value = self._get_style(SurfacesToPlot, sv.SURFACESTOPLOT)
if value == SurfacesToPlot.None_:
return None
else:
return value
@surfaces_to_plot.setter
def surfaces_to_plot(self, surfaces):
if surfaces is None:
surfaces = SurfacesToPlot.None_
self._set_style(SurfacesToPlot(surfaces), sv.SURFACESTOPLOT)
@property
def i_range(self):
"""`tuple` of `integers <int>` (min, max, step): `IndexRange` for the *I* dimension of ordered data.
This example shows ``I``-planes at ``i = [0, 2, 4, 6, 8, 10]``::
>>> from tecplot.constant import SurfacesToPlot
>>> srf = frame.plot().fieldmap(0).surfaces
>>> srf.surfaces_to_plot = SurfacesToPlot.IPlanes
>>> srf.i_range = 0, 10, 2
"""
return session.IndexRange(self, sv.IRANGE)
@i_range.setter
def i_range(self, values):
session.IndexRange(self, sv.IRANGE)[:] = values
@property
def j_range(self):
"""`tuple` of `integers <int>` (min, max, step): `IndexRange` for the *J* dimension of ordered data.
This example shows all ``J``-planes starting with ``j = 10`` up to the
maximum ``J``-plane of the associated `Zone <data_access>`::
>>> from tecplot.constant import SurfacesToPlot
>>> srf = frame.plot().fieldmap(0).surfaces
>>> srf.surfaces_to_plot = SurfacesToPlot.JPlanes
>>> srf.j_range = 10, None, 1
"""
return session.IndexRange(self, sv.JRANGE)
@j_range.setter
def j_range(self, values):
session.IndexRange(self, sv.JRANGE)[:] = values
@property
def k_range(self):
"""`tuple` of `integers <int>` (min, max, step): `IndexRange` for the *K* dimension of ordered data.
This example shows all ``K``-planes starting with the first up to 5
from the last ``K``-plane of the associated `Zone <data_access>`::
>>> from tecplot.constant import SurfacesToPlot
>>> srf = frame.plot().fieldmap(0).surfaces
>>> srf.surfaces_to_plot = SurfacesToPlot.KPlanes
>>> srf.k_range = None, -5
"""
return session.IndexRange(self, sv.KRANGE)
@k_range.setter
def k_range(self, values):
session.IndexRange(self, sv.KRANGE)[:] = values
[docs]
class FieldmapVector(session.SubStyle):
"""Field plot of arrows.
Before doing anything with vector plots, one must set the variables to be
used for the ``(U, V, W)`` coordinates. This is done through the plot
object. Once set, the vectors can be displayed and manipulated using this
class:
.. code-block:: python
:emphasize-lines: 24-26,33-37
import numpy as np
import tecplot as tp
from tecplot.data.operate import execute_equation
from tecplot.constant import (PlotType, PointsToPlot, VectorType,
ArrowheadStyle)
frame = tp.active_frame()
dataset = frame.dataset
for v in ['X','Y','Z','P','Q','R']:
dataset.add_variable(v)
zone = dataset.add_ordered_zone('Zone', (30,30,30))
xx = np.linspace(0,30,30)
for v,arr in zip(['X','Y','Z'],np.meshgrid(xx,xx,xx)):
zone.values(v)[:] = arr.ravel()
execute_equation('{P} = -10 * {X} + {Y}**2 + {Z}**2')
execute_equation('{Q} = {X} - 10 * {Y} - {Z}**2')
execute_equation('{R} = {X}**2 + {Y}**2 - {Z} ')
frame.plot_type = PlotType.Cartesian3D
plot = frame.plot()
plot.contour(0).variable = dataset.variable('P')
plot.contour(0).colormap_name = 'Two Color'
plot.contour(0).levels.reset_to_nice()
plot.vector.u_variable = dataset.variable('P')
plot.vector.v_variable = dataset.variable('Q')
plot.vector.w_variable = dataset.variable('R')
plot.show_vector = True
points = plot.fieldmap(0).points
points.points_to_plot = PointsToPlot.AllNodes
points.step = (5,3,2)
vector = plot.fieldmap(0).vector
vector.show = True
vector.vector_type = VectorType.MidAtPoint
vector.arrowhead_style = ArrowheadStyle.Filled
vector.color = plot.contour(0)
vector.line_thickness = 0.4
# save image to file
tp.export.save_png('fieldmap_vector.png', 600, supersample=3)
.. figure:: /_static/images/fieldmap_vector.png
:width: 300px
:figwidth: 300px
"""
def __init__(self, fieldmap):
super().__init__(fieldmap, sv.VECTOR)
@property
def show(self):
"""`bool`: Enable drawing vectors on the plot.
Example usage::
>>> plot.show_vector = True
>>> plot.fieldmap(0).vector.show = True
"""
return self._get_style(bool, sv.SHOW)
@show.setter
def show(self, value):
self._set_style(bool(value), sv.SHOW)
@property
def vector_type(self):
"""`VectorType`: Anchor point of the drawn vectors.
Possible values: `TailAtPoint`, `HeadAtPoint`, `MidAtPoint`, `HeadOnly`.
Example usage::
>>> from tecplot.constant import VectorType
>>> plot.fieldmap(0).vector.vector_type = VectorType.MidAtPoint
"""
return self._get_style(VectorType, sv.VECTORTYPE)
@vector_type.setter
def vector_type(self, value):
self._set_style(VectorType(value), sv.VECTORTYPE)
@property
def tangent_only(self):
"""`bool`: Show only tangent vectors.
Set to `True` to display **only** the tangent component of vectors.
Tangent vectors are drawn on 3D surfaces only where it is possible to
determine a vector normal to the surface. A plot where multiple
surfaces intersect each other using common nodes is a case where
tangent vectors are not drawn because there is more than one normal to
choose from. An example of this would be a volume ``IJK``-ordered zone
where both the ``I`` and ``J``-planes are shown. If tangent vectors
cannot be drawn, then regular vectors are plotted instead.
Example usage::
>>> plot.fieldmap(0).vector.tangent_only = True
"""
return self._get_style(bool, sv.ISTANGENT)
@tangent_only.setter
def tangent_only(self, value):
self._set_style(bool(value), sv.ISTANGENT)
@property
def color(self):
"""`Color` or `ContourGroup`: The `Color` or `ContourGroup` to use when drawing vectors.
FieldmapVectors can be a solid color or be colored by a `ContourGroup`
as obtained through the ``plot.contour`` property. Note that changing
style on this `ContourGroup` will affect all other fieldmaps on the
same `Frame <layout.Frame>` that use it. Example usage::
>>> from tecplot.constant import Color
>>> plot.fieldmap(1).vector.color = Color.Blue
Example of setting the color from a `ContourGroup`::
>>> plot.fieldmap(1).vector.color = plot.contour(1)
"""
return color_spec(self._get_style(Color, sv.COLOR), self.parent.plot)
@color.setter
def color(self, value):
self._set_style(color_spec(value), sv.COLOR)
@property
def arrowhead_style(self):
"""`ArrowheadStyle`: The `ArrowheadStyle` drawn.
Possible values: `Plain`, `Filled <ArrowheadStyle.Filled>`,
`Hollow <ArrowheadStyle.Hollow>`.
Example usage::
>>> from tecplot.constant import ArrowheadStyle
>>> plot.fieldmap(0).vector.arrowhead_style = ArrowheadStyle.Filled
"""
return self._get_style(ArrowheadStyle, sv.ARROWHEADSTYLE)
@arrowhead_style.setter
def arrowhead_style(self, value):
self._set_style(ArrowheadStyle(value), sv.ARROWHEADSTYLE)
@property
def line_pattern(self):
"""`LinePattern`: The `LinePattern` used to draw the arrow line.
Possible values: `Solid <LinePattern.Solid>`, `Dashed`, `DashDot`,
`Dotted`, `LongDash`, `DashDotDot`.
Example usage::
>>> from tecplot.constant import LinePattern
>>> vector = plot.fieldmap(0).vector
>>> vector.line_pattern = LinePattern.DashDot
"""
return self._get_style(LinePattern, sv.LINEPATTERN)
@line_pattern.setter
def line_pattern(self, value):
self._set_style(LinePattern(value), sv.LINEPATTERN)
@property
def line_thickness(self):
"""`float` (percentage of `Frame <layout.Frame>` height): The width of the arrow line.
Example usage::
>>> from tecplot.constant import LinePattern
>>> vector = plot.fieldmap(0).vector.line_thickness = 0.7
"""
return self._get_style(float, sv.LINETHICKNESS)
@line_thickness.setter
def line_thickness(self, value):
self._set_style(float(value), sv.LINETHICKNESS)
@property
def pattern_length(self):
"""`float` (percentage of `Frame <layout.Frame>` height): Length of the pattern used when drawing vector lines.
Example usage::
>>> from tecplot.constant import LinePattern
>>> vector = plot.fieldmap(0).vector
>>> vector.line_pattern = LinePattern.Dashed
>>> vector.pattern_length = 3.5
"""
return self._get_style(float, sv.PATTERNLENGTH)
@pattern_length.setter
def pattern_length(self, value):
self._set_style(float(value), sv.PATTERNLENGTH)
class FieldmapCollection(session.Style):
def __init__(self, plot, *indices):
self._indices = set(tecutil.flatten_args(*indices))
self.plot = plot
super().__init__(sv.FIELDMAP, uniqueid=self.plot.frame.uid,
objectset=self._indices)
@property
def fieldmap_indices(self):
"""`list`: Read-only, sorted `list` of zero-based fieldmap indices."""
return sorted(self._indices)
def __iter__(self):
self._current_index = -1
self._max_index = len(self._indices)
return self
def __next__(self):
self._current_index += 1
if self._current_index < self._max_index:
return self[self._current_index]
raise StopIteration
def __eq__(self, that):
return (isinstance(that, type(self)) and
self.plot == that.plot and
self._indices == that._indices)
def __ne__(self, that):
return not (self == that)
def __iadd__(self, keys):
self._indices |= self.plot._fieldmap_indices(keys)
return self
def __isub__(self, keys):
self._indices -= self.plot._fieldmap_indices(keys)
return self
@property
def group(self):
"""`int`: Zero-based group number for this `Fieldmap`.
This is a piece of auxiliary data and can be useful for identifying a
subset of fieldmaps. For example, to loop over all fieldmaps that have
group set to 4::
>>> plot.fieldmaps(0, 3).group = 4
>>> for fmap in filter(lambda f: f.group == 4, plot.fieldmaps()):
... print(fmap.index)
0
3
"""
return self._get_style(Index, sv.GROUP)
@group.setter
def group(self, value):
self._set_style(Index(value), sv.GROUP)
@property
def show(self):
"""`bool`: Display the fielmaps in this collection on the plot.
Example turning on all fieldmaps on the plot::
>>> plot.fieldmaps().show = True
"""
return tuple([i in self.plot.active_fieldmap_indices
for i in self.fieldmap_indices])
@show.setter
def show(self, value):
assignment = AssignOp.PlusEquals if value else AssignOp.MinusEquals
session.set_style(self._indices, sv.ACTIVEFIELDMAPS,
assignmodifier=assignment,
uniqueid=self.plot.frame.uid)
@property
def contour(self):
"""`FieldmapContour`: Style including flooding, lines and line coloring.
"""
return FieldmapContour(self)
@property
def edge(self):
"""`FieldmapEdge`: Style control for boundary lines.
"""
return FieldmapEdge(self)
@property
def mesh(self):
"""`FieldmapMesh`: Style lines connecting neighboring data points.
"""
return FieldmapMesh(self)
@property
def scatter(self):
"""`FieldmapScatter`: Style for scatter plots.
"""
return FieldmapScatter(self)
@property
def surfaces(self):
"""`FieldmapSurfaces`: Control which surfaces to draw.
"""
return FieldmapSurfaces(self)
@property
def points(self):
"""`FieldmapPoints`: Control which points to draw.
"""
return FieldmapPoints(self)
@property
def vector(self):
"""`FieldmapVector`: Style for vector field plots using arrows.
"""
return FieldmapVector(self)
class Fieldmap(FieldmapCollection):
def __init__(self, plot, index):
self.index = index
super().__init__(plot, index)
def _get_style(self, rettype, *svargs, **kwargs):
return super()._get_style(rettype, *svargs, **kwargs)[0]
@property
def show(self):
"""`bool`: Display this fieldmap on the plot.
Example usage::
>>> plot.fieldmap(0).show = True
.. seealso:: `Cartesian2DFieldmapCollection` or
`Cartesian3DFieldmapCollection`
For optimized style control of several fieldmaps, it is recommended
to use `Cartesian2DFieldmapCollection` or
`Cartesian3DFieldmapCollection` objects.
"""
return self._indices.issubset(self.plot.active_fieldmap_indices)
@show.setter
def show(self, show):
assignment = AssignOp.PlusEquals if show else AssignOp.MinusEquals
session.set_style(self._indices, sv.ACTIVEFIELDMAPS,
assignmodifier=assignment,
uniqueid=self.plot.frame.uid)
@property
def zones(self):
"""List of `zones <data_access>` used by this fieldmap.
Example usage::
>>> for zone in fieldmap.zones:
... print(zone.name)
Zone 1
Zone 2
"""
with self.plot.frame.activated():
i = next(iter(self._indices))
success, zones_ptr = _tecutil.FieldMapGetZones(i + 1)
if not success:
raise TecplotSystemError()
zones_indexset = cast(zones_ptr, IndexSet)
zone_indices = set(zones_indexset)
zones_indexset.dealloc()
for index in zone_indices:
yield self.plot.frame.dataset.zone(index)
[docs]
class FieldmapEffects(session.SubStyle):
"""Clipping and blanking style control.
This object controls value blanking and clipping from plane slices for
this fieldmap.
"""
def __init__(self, fieldmap):
self.fieldmap = fieldmap
super().__init__(fieldmap, sv.EFFECTS)
@property
def value_blanking(self):
"""`bool`: Enable value blanking effect for this fieldmap.
Example usage::
>>> plot.fieldmap(0).effects.value_blanking = True
"""
return self._get_style(bool, sv.USEVALUEBLANKING)
@value_blanking.setter
def value_blanking(self, value):
self._set_style(bool(value), sv.USEVALUEBLANKING)
@property
def clip_planes(self):
tecutil.api_moved('FieldmapEffects.clip_planes',
'FieldmapEffects3D.clip_planes',
'1.2', '2020 R1', warning=True)
return FieldmapEffects3D(self.fieldmap).clip_planes
@clip_planes.setter
def clip_planes(self, values):
tecutil.api_moved('FieldmapEffects.clip_planes',
'FieldmapEffects3D.clip_planes',
'1.2', '2020 R1', warning=True)
FieldmapEffects3D(self.fieldmap).clip_planes = values
[docs]
class FieldmapEffects3D(FieldmapEffects):
"""Lighting and translucency style control.
.. code-block:: python
:emphasize-lines: 24-26
import os
import tecplot as tp
from tecplot.constant import LightingEffect, PlotType, SurfacesToPlot
examples_dir = tp.session.tecplot_examples_directory()
datafile = os.path.join(examples_dir, 'SimpleData', 'F18.plt')
dataset = tp.data.load_tecplot(datafile)
frame = dataset.frame
# Enable 3D field plot, turn on contouring and translucency
frame.plot_type = PlotType.Cartesian3D
plot = frame.plot()
plot.show_contour = True
plot.use_translucency = True
plot.contour(0).variable = dataset.variable('S')
# adjust effects for every fieldmap in this dataset
fmaps = plot.fieldmaps()
fmaps.contour.flood_contour_group = plot.contour(0)
fmaps.surfaces.surfaces_to_plot = SurfacesToPlot.BoundaryFaces
eff = fmaps.effects
eff.lighting_effect = LightingEffect.Paneled
eff.surface_translucency = 30
# ensure consistent output between interactive (connected) and batch
plot.contour(0).levels.reset_to_nice()
# save image to file
tp.export.save_png('fieldmap_effects3d.png', 600, supersample=3)
.. figure:: /_static/images/fieldmap_effects3d.png
:width: 300px
:figwidth: 300px
"""
@property
def lighting_effect(self):
"""`LightingEffect`: The type of lighting effect to render.
Possible values:
`Paneled <LightingEffect.Paneled>`
Within each cell, the color assigned to each area by shading or
contour flooding is tinted by a shade constant across the cell.
This shade is based on the orientation of the cell relative to your
3D light source.
`Gouraud <LightingEffect.Gouraud>`
This plot type offers smoother, more continuous shading than
`Paneled <LightingEffect.Paneled>` shading, but it results in
slower plotting and larger vector images. `Gouraud
<LightingEffect.Gouraud>` shading is not continuous across zone
boundaries unless face neighbors are specified in the data and is
not available for finite element volume zones when blanking is
active in which case, the zone's lighting effect reverts to
`Paneled <LightingEffect.Paneled>` shading in this case.
If ``IJK``-ordered data with `FieldmapSurfaces.surfaces_to_plot` is set
to `SurfacesToPlot.ExposedCellFaces`, faces exposed by blanking will
revert to `Paneled <LightingEffect.Paneled>` shading.
Example usage::
>>> from tecplot.constant import LightingEffect
>>> effects = plot.fieldmap(0).effects
>>> effects.lighting_effect = LightingEffect.Paneled
"""
return self._get_style(LightingEffect, sv.LIGHTINGEFFECT)
@lighting_effect.setter
def lighting_effect(self, value):
self._set_style(LightingEffect(value), sv.LIGHTINGEFFECT)
@property
def use_translucency(self):
"""`bool`: Enable translucency of all drawn surfaces for this fieldmap.
This enables translucency controlled by the ``surface_translucency``
attribute::
>>> effects = plot.fieldmap(0).effects
>>> effects.use_translucency = True
>>> effects.surface_translucency = 50
"""
return self._get_style(bool, sv.USETRANSLUCENCY)
@use_translucency.setter
def use_translucency(self, value):
self._set_style(bool(value), sv.USETRANSLUCENCY)
@property
def surface_translucency(self):
"""`int` Translucency of all surfaces for this fieldmap in percent.
The ``use_translucency`` attribute must be set to `True`::
>>> effects = plot.fieldmap(0).effects
>>> effects.use_translucency = True
>>> effects.surface_translucency = 50
"""
return self._get_style(int, sv.SURFACETRANSLUCENCY)
@surface_translucency.setter
def surface_translucency(self, value):
self._set_style(int(value), sv.SURFACETRANSLUCENCY)
def _validate_clip_planes(self, indices=None):
"""Warn if clip planes are Arbitrary, I, J or K-plane orientation."""
valid_orientations = set([SliceSurface.XPlanes,
SliceSurface.YPlanes,
SliceSurface.ZPlanes])
if __debug__:
indices = indices or self.clip_planes or []
plot = self.fieldmap.plot
for index in indices:
if plot.slice(index).orientation not in valid_orientations:
msg = 'Slice clipping only supported for X, Y and Z-planes.'
warnings.warn(msg, TecplotWarning)
@property
def clip_planes(self):
"""`list` of `integers <int>` [0-5]: Slice groups to use for clipping.
Only slice groups 0 to 5 are available for clipping. Example usage::
>>> plot.fieldmap(0).effects.clip_planes = [0, 1, 2]
.. seealso:: `SliceGroup.clip`
"""
return self._get_style(list, sv.USECLIPPLANES) or None
@clip_planes.setter
def clip_planes(self, values):
if values is None:
values = list()
if not isinstance(values, Iterable):
values = [values]
indices = []
for v in values:
if hasattr(v, '_indices'):
indices.extend(v._indices)
else:
indices.append(v)
indices = sorted(set(indices))
self._validate_clip_planes(indices)
if __debug__:
if any(i < 0 or 6 <= i for i in indices):
msg = 'Slice clipping only supported for slice groups 0-5'
raise TecplotIndexError(msg)
self._set_style(indices, sv.USECLIPPLANES,
**{sv.ASSIGNMODIFIER: AssignOp.Equals})
[docs]
class FieldmapShade(session.SubStyle):
"""Fill color for displayed surfaces on 2D field plots.
Although most commonly used with 3D surfaces (see `FieldmapShade3D`), shade
plots can be used to flood 2D plots with solid colors.
.. code-block:: python
:emphasize-lines: 19
import os
import random
import tecplot
from tecplot.constant import Color, PlotType
random.seed(1)
examples_dir = tecplot.session.tecplot_examples_directory()
datafile = os.path.join(examples_dir, 'SimpleData', 'F18.plt')
dataset = tecplot.data.load_tecplot(datafile)
frame = dataset.frame
frame.plot_type = PlotType.Cartesian2D
plot = frame.plot()
for zone in dataset.zones():
color = Color(random.randint(0,63))
while color == Color.White:
color = Color(random.randint(0,63))
plot.fieldmap(zone).shade.color = color
tecplot.export.save_png('fieldmap_shade2d.png', 600, supersample=3)
.. figure:: /_static/images/fieldmap_shade2d.png
:width: 300px
:figwidth: 300px
"""
def __init__(self, fieldmap):
super().__init__(fieldmap, sv.SHADE)
@property
def show(self):
"""`bool`: FieldmapShade the drawn surfaces.
Example usage::
>>> plot.fieldmap(0).shade.show = False
"""
return self._get_style(bool, sv.SHOW)
@show.setter
def show(self, value):
self._set_style(bool(value), sv.SHOW)
@property
def color(self):
"""`Color`: Fill `Color` of the shade.
Example usage::
>>> from tecplot.constant import Color
>>> plot.fieldmap(0).shade.color = Color.Blue
"""
return self._get_style(Color, sv.COLOR)
@color.setter
def color(self, value):
self._set_style(Color(value), sv.COLOR)
[docs]
class FieldmapShade3D(FieldmapShade):
"""Fill color for displayed surfaces on 3D field plots.
This class inherits all functionality and purpose from `FieldmapShade` and
adds the ability to turn on or off the lighting effect. In 3D plots,
fieldmap effects (translucency and lighting) cause color variation
(shading) throughout the zones. Shading can can be useful in discerning the
shape of the data:
.. code-block:: python
:emphasize-lines: 21-22
import os
import random
import tecplot
from tecplot.constant import Color, PlotType, SurfacesToPlot
random.seed(1)
examples_dir = tecplot.session.tecplot_examples_directory()
datafile = os.path.join(examples_dir, 'SimpleData', 'F18.plt')
dataset = tecplot.data.load_tecplot(datafile)
frame = dataset.frame
frame.plot_type = PlotType.Cartesian3D
plot = frame.plot()
for zone in dataset.zones():
color = Color(random.randint(0,63))
while color == Color.White:
color = Color(random.randint(0,63))
fmap = plot.fieldmap(zone)
fmap.surfaces.surfaces_to_plot = SurfacesToPlot.BoundaryFaces
fmap.shade.color = color
fmap.shade.use_lighting_effect = False
tecplot.export.save_png('fieldmap_shade3d.png', 600, supersample=3)
.. figure:: /_static/images/fieldmap_shade3d.png
:width: 300px
:figwidth: 300px
"""
@property
def use_lighting_effect(self):
"""`bool`: Draw a lighting effect on the shaded surfaces.
Example usage::
>>> plot.fieldmap(0).shade.use_lighting_effect = False
"""
return self._get_style(bool, sv.USELIGHTINGEFFECT)
@use_lighting_effect.setter
def use_lighting_effect(self, value):
self._set_style(bool(value), sv.USELIGHTINGEFFECT)
[docs]
class Cartesian2DFieldmapCollection(FieldmapCollection):
"""Style control for one or more 2D fieldmaps.
This class behaves like `Cartesian2DFieldmap` except that setting any
underlying style will do so for all of the represented fieldmaps. The
style properties are then always returned as a `tuple` of properties,
one for each fieldmap, ordered by index number. This means there is an
asymmetry between setting and getting any property under this object,
illustrated by the following example::
>>> fmaps = plot.fieldmaps(0, 1, 2)
>>> fmaps.show = True
>>> print(fmaps.show)
(True, True, True)
This is the preferred way to control the style of many fieldmaps as it
is much faster to execute. All examples that set style on a single
fieldmap like the following::
>>> plot.fieldmap(0).contour.show = True
may be converted to setting the same style on all fieldmaps like so::
>>> plot.fieldmaps().contour.show = True
.. seealso:: `Cartesian2DFieldmap`
.. versionadded:: 1.1
Fieldmap collection objects.
"""
def __getitem__(self, index):
return Cartesian2DFieldmap(self.plot, self.fieldmap_indices[index])
@property
def effects(self):
"""`FieldmapEffects`: Style control for clipping and blanking effects.
"""
return FieldmapEffects(self)
@property
def shade(self):
"""`FieldmapShade`: Style control for surface shading.
"""
return FieldmapShade(self)
@property
def show_iso_surfaces(self):
tecutil.api_moved('Fieldmap.show_iso_surfaces',
'Cartesian3DFieldmap.show_isosurfaces',
'1.2', '2020 R1', warning=True)
fr = self.plot.frame
fmap3d = fr.plot(PlotType.Cartesian3D).fieldmaps(self._indices)
return fmap3d.show_isosurfaces
@show_iso_surfaces.setter
def show_iso_surfaces(self, show):
tecutil.api_moved('Fieldmap.show_iso_surfaces',
'Cartesian3DFieldmap.show_isosurfaces',
'1.2', '2020 R1', warning=True)
fr = self.plot.frame
fmap3d = fr.plot(PlotType.Cartesian3D).fieldmaps(self._indices)
fmap3d.show_isosurfaces = show
@property
def show_slices(self):
tecutil.api_moved('Fieldmap.show_slices',
'Cartesian3DFieldmap.show_slices',
'1.2', '2020 R1', warning=True)
fr = self.plot.frame
fmap3d = fr.plot(PlotType.Cartesian3D).fieldmaps(self._indices)
return fmap3d.show_slices
@show_slices.setter
def show_slices(self, show):
tecutil.api_moved('Fieldmap.show_slices',
'Cartesian3DFieldmap.show_slices',
'1.2', '2020 R1', warning=True)
fr = self.plot.frame
fmap3d = fr.plot(PlotType.Cartesian3D).fieldmaps(self._indices)
fmap3d.show_slices = show
@property
def show_streamtraces(self):
tecutil.api_moved('Fieldmap.show_streamtraces',
'Cartesian3DFieldmap.show_streamtraces',
'1.2', '2020 R1', warning=True)
fr = self.plot.frame
fmap3d = fr.plot(PlotType.Cartesian3D).fieldmaps(self._indices)
return fmap3d.show_streamtraces
@show_streamtraces.setter
def show_streamtraces(self, show):
tecutil.api_moved('Fieldmap.show_streamtraces',
'Cartesian3DFieldmap.show_streamtraces',
'1.2', '2020 R1', warning=True)
fr = self.plot.frame
fmap3d = fr.plot(PlotType.Cartesian3D).fieldmaps(self._indices)
fmap3d.show_streamtraces = show
[docs]
class Cartesian3DFieldmapCollection(FieldmapCollection):
"""Style control for one or more 3D fieldmaps.
This class behaves like `Cartesian3DFieldmap` except that setting any
underlying style will do so for all of the represented fieldmaps. The
style properties are then always returned as a `tuple` of properties,
one for each fieldmap, ordered by index number. This means there is an
asymmetry between setting and getting any property under this object,
illustrated by the following example::
>>> fmaps = plot.fieldmaps(0, 1, 2)
>>> fmaps.show = True
>>> print(fmaps.show)
(True, True, True)
This is the preferred way to control the style of many fieldmaps as it
is much faster to execute. All examples that set style on a single
fieldmap like the following::
>>> plot.fieldmap(0).contour.show = True
may be converted to setting the same style on all fieldmaps like so::
>>> plot.fieldmaps().contour.show = True
.. seealso:: `Cartesian3DFieldmap`
.. versionadded:: 1.1
Fieldmap collection objects.
The following example illustrates manipulating the style for a selection of
fieldmaps associated with specific zones:
.. code-block:: python
:emphasize-lines: 15-17
import os
import numpy
import tecplot
examples_dir = tecplot.session.tecplot_examples_directory()
infile = os.path.join(examples_dir, 'SimpleData', 'F18.lay')
tecplot.load_layout(infile)
frame = tecplot.active_frame()
plot = frame.plot()
dataset = frame.dataset
plot.contour(0).colormap_name = 'GrayScale'
plot.contour(0).legend.show = False
wings = [dataset.zone(name) for name in ['left wing', 'right wing']]
fmaps = frame.plot().fieldmaps(wings)
fmaps.contour.flood_contour_group = plot.contour(1)
plot.contour(1).colormap_name = 'Sequential - Yellow/Green/Blue'
plot.contour(1).levels.reset_levels(numpy.linspace(-0.07, 0.07, 50))
tecplot.export.save_png('F18_wings.png', 600, supersample=3)
.. figure:: /_static/images/F18_wings.png
:width: 300px
:figwidth: 300px
"""
def __getitem__(self, index):
return Cartesian3DFieldmap(self.plot, self.fieldmap_indices[index])
@property
def effects(self):
"""`FieldmapEffects3D`: Style control for blanking and lighting effects.
"""
return FieldmapEffects3D(self)
@property
def shade(self):
"""`FieldmapShade3D`: Style control for surface shading.
"""
return FieldmapShade3D(self)
@property
def show_iso_surfaces(self):
tecutil.api_moved('Fieldmap.show_iso_surfaces',
'Cartesian3DFieldmap.show_isosurfaces',
'1.2', '2020 R1', warning=True)
return self.show_isosurfaces
@show_iso_surfaces.setter
def show_iso_surfaces(self, show):
tecutil.api_moved('Fieldmap.show_iso_surfaces',
'Cartesian3DFieldmap.show_isosurfaces',
'1.2', '2020 R1', warning=True)
self.show_isosurfaces = show
@property
def show_isosurfaces(self):
"""`bool`: Enable drawing of Iso-surfaces."""
return self._get_style(bool, sv.VOLUMEMODE, sv.VOLUMEOBJECTSTOPLOT,
sv.SHOWISOSURFACES)
@show_isosurfaces.setter
def show_isosurfaces(self, show):
self._set_style(bool(show), sv.VOLUMEMODE, sv.VOLUMEOBJECTSTOPLOT,
sv.SHOWISOSURFACES)
@property
def show_slices(self):
"""`bool`: Enable drawing of slice surfaces."""
return self._get_style(bool, sv.VOLUMEMODE, sv.VOLUMEOBJECTSTOPLOT,
sv.SHOWSLICES)
@show_slices.setter
def show_slices(self, show):
self._set_style(bool(show), sv.VOLUMEMODE, sv.VOLUMEOBJECTSTOPLOT,
sv.SHOWSLICES)
@property
def show_streamtraces(self):
"""`bool`: Enable drawing of streamtraces."""
return self._get_style(bool, sv.VOLUMEMODE, sv.VOLUMEOBJECTSTOPLOT,
sv.SHOWSTREAMTRACES)
@show_streamtraces.setter
def show_streamtraces(self, show):
self._set_style(bool(show), sv.VOLUMEMODE, sv.VOLUMEOBJECTSTOPLOT,
sv.SHOWSTREAMTRACES)
[docs]
class Cartesian2DFieldmap(Fieldmap, Cartesian2DFieldmapCollection):
"""Style control for a single 2D fieldmap.
.. seealso:: `Cartesian2DFieldmapCollection`
"""
pass
[docs]
class Cartesian3DFieldmap(Fieldmap, Cartesian3DFieldmapCollection):
"""Style control for a single 3D fieldmap.
.. seealso:: `Cartesian3DFieldmapCollection`
"""
pass