Source code for tecplot.plot.contour

from builtins import int, str, super

from ..tecutil import _tecutil
from ..constant import *
from ..exception import *
from .. import legend, session, tecutil, text
from ..tecutil import Index, flatten_args, lock, lock_attributes, sv


[docs] class ContourColormapOverride(session.Style): """Assigns contour bands to specific color. Specific contour bands can be assigned a unique basic color. This is useful for forcing a particular region to use blue, for example, to designate an area of water. You can define up to 16 color overrides: .. code-block:: python :emphasize-lines: 29,32-36 from os import path import tecplot as tp from tecplot.constant import * # load the data examples_dir = tp.session.tecplot_examples_directory() datafile = path.join(examples_dir, 'SimpleData', 'HeatExchanger.plt') dataset = tp.data.load_tecplot(datafile) # set plot type to 2D field plot frame = tp.active_frame() frame.plot_type = PlotType.Cartesian2D plot = frame.plot() # show boundary faces and contours surfaces = plot.fieldmap(0).surfaces surfaces.surfaces_to_plot = SurfacesToPlot.BoundaryFaces plot.show_contour = True # by default, contour 0 is the one that's shown, # set the contour's variable, colormap and number of levels contour = plot.contour(0) contour.variable = dataset.variable('T(K)') contour.colormap_name = 'Sequential - Yellow/Green/Blue' contour.levels.reset(9) # turn on colormap overrides for this contour contour_filter = contour.colormap_filter contour_filter.show_overrides = True # turn on override 0, coloring the first 4 levels red contour_override = contour_filter.override(0) contour_override.show = True contour_override.color = Color.Red contour_override.start_level = 7 contour_override.end_level = 8 # save image to file tp.export.save_png('contour_override.png', 600, supersample=3) .. figure:: /_static/images/contour_override.png :width: 300px :figwidth: 300px """ def __init__(self, index, colormap_filter): self.index = Index(index) self.colormap_filter = colormap_filter super().__init__(colormap_filter._sv, sv.COLORMAPOVERRIDE, **colormap_filter._kw) @property def show(self): """`bool`: Include this colormap override when filter is shown. Example usage:: >>> colormap_filter = plot.contour(0).colormap_filter >>> cmap_override = colormap_filter.override(0) >>> cmap_override.show = True """ return self._get_style(bool, sv.INCLUDE) @show.setter def show(self, show): self._set_style(bool(show), sv.INCLUDE) @property def color(self): """`Color`: Color which will override the colormap. Example usage:: >>> from tecplot.constant import Color >>> colormap_filter = plot.contour(0).colormap_filter >>> cmap_override = colormap_filter.override(0) >>> cmap_override.color = Color.Blue """ return self._get_style(Color, sv.COLOR) @color.setter def color(self,value): self._set_style(Color(value), sv.COLOR) @property def start_level(self): """`int`: First level to override. Example usage:: >>> colormap_filter = plot.contour(0).colormap_filter >>> cmap_override = colormap_filter.override(0) >>> cmap_override.start_level = 2 """ return self._get_style(int, sv.STARTLEVEL) @start_level.setter def start_level(self,value): self._set_style(int(value), sv.STARTLEVEL) @property def end_level(self): """`int`: Last level to override. Example usage:: >>> colormap_filter = plot.contour(0).colormap_filter >>> cmap_override = colormap_filter.override(0) >>> cmap_override.end_level = 2 """ return self._get_style(int, sv.ENDLEVEL) @end_level.setter def end_level(self,value): self._set_style(int(value), sv.ENDLEVEL)
[docs] class ContourColormapZebraShade(session.Style): """This filter sets a uniform color for every other band. Setting the color to `None` turns the bands off and makes them transparent: .. code-block:: python :emphasize-lines: 20-22 from os import path import numpy as np import tecplot as tp from tecplot.constant import Color, SurfacesToPlot # load the data examples_dir = tp.session.tecplot_examples_directory() datafile = path.join(examples_dir,'SimpleData','Pyramid.plt') dataset = tp.data.load_tecplot(datafile) # show boundary faces and contours plot = tp.active_frame().plot() surfaces = plot.fieldmap(0).surfaces surfaces.surfaces_to_plot = SurfacesToPlot.BoundaryFaces plot.show_contour = True plot.show_shade = False # set zebra filter on and make the zebra contours transparent cont0 = plot.contour(0) zebra = cont0.colormap_filter.zebra_shade zebra.show = True zebra.transparent = True # ensure consistent output between interactive (connected) and batch cont0.levels.reset_to_nice() tp.export.save_png('contour_zebra.png', 600, supersample=3) .. figure:: /_static/images/contour_zebra.png :width: 300px :figwidth: 300px """ def __init__(self, colormap_filter): self.colormap_filter = colormap_filter super().__init__(colormap_filter._sv, sv.ZEBRA, uniqueid=self.colormap_filter.contour.plot.frame.uid, offset1=self.colormap_filter.contour.index) @property def show(self): """`bool`: Show zebra shading in this `ContourGroup`. Example usage:: >>> cmap_filter = plot.contour(0).colormap_filter >>> cmap_filter.zebra_shade.show = True """ return self._get_style(bool, sv.INCLUDE) @show.setter def show(self,value): self._set_style(bool(value), sv.INCLUDE) @property def color(self): """`Color`: Color of the zebra shading. Example usage:: >>> from tecplot.constant import Color >>> filter = plot.contour(0).colormap_filter >>> zebra = filter.zebra_shade >>> zebra.show = True >>> zebra.color = Color.Blue """ return self._get_style(Color, sv.COLOR) @color.setter def color(self, value): self._set_style(Color(value), sv.COLOR) @property def transparent(self): """`bool`: Set the the zebra bands to be transparent. Example usage:: >>> filter = plot.contour(0).colormap_filter >>> zebra = filter.zebra_shade >>> zebra.show = True >>> zebra.transparent = True """ return self._get_style(bool, sv.ISTRANSPARENT) @transparent.setter def transparent(self, value): self._set_style(bool(value), sv.ISTRANSPARENT)
class ContourGroupStyle(session.Style): def __init__(self, contour, *svargs): kw = dict(uniqueid=contour.plot.frame.uid, offset1=contour.index) super().__init__(contour._sv, *svargs, **kw)
[docs] class ContourColorCutoff(ContourGroupStyle): """Color-mapped value limits to display. This lets you specify a range within which contour flooding and multi-colored objects, such as scatter symbols, are displayed: .. code-block:: python :emphasize-lines: 17-22 import os import tecplot as tp from tecplot.constant import PlotType, SurfacesToPlot # load the data examples_dir = tp.session.tecplot_examples_directory() datafile = os.path.join(examples_dir,'SimpleData','Pyramid.plt') dataset = tp.data.load_tecplot(datafile) # show boundary faces and contours plot = tp.active_frame().plot() surfaces = plot.fieldmap(0).surfaces surfaces.surfaces_to_plot = SurfacesToPlot.BoundaryFaces plot.show_contour = True # cutoff contour flooding outside min/max range cutoff = plot.contour(0).color_cutoff cutoff.include_min = True cutoff.min = 0.5 cutoff.include_max = True cutoff.max = 1.0 cutoff.inverted = True # ensure consistent output between interactive (connected) and batch plot.contour(0).levels.reset_to_nice() tp.export.save_png('contour_color_cutoff.png',600) .. figure:: /_static/images/contour_color_cutoff.png :width: 300px :figwidth: 300px """ def __init__(self, contour): self.contour = contour super().__init__(contour, sv.COLORCUTOFF) @property def include_min(self): """`bool`: Use the minimum cutoff value. Example usage:: >>> plot.contour(0).color_cutoff.include_min = True >>> plot.contour(0).color_cutoff.min = 3.14 """ return self._get_style(bool, sv.INCLUDEMIN) @include_min.setter def include_min(self, value): self._set_style(bool(value), sv.INCLUDEMIN) @property def include_max(self): """`bool`: Use the maximum cutoff value. Thie example turns off the maximum cutoff:: >>> plot.contour(0).color_cutoff.include_max = False """ return self._get_style(bool, sv.INCLUDEMAX) @include_max.setter def include_max(self, value): self._set_style(bool(value), sv.INCLUDEMAX) @property def min(self): """`float` or `None`: The minimum cutoff value. The ``include_min`` must be set to `True`:: >>> plot.contour(0).color_cutoff.include_min = True >>> plot.contour(0).color_cutoff.min = 3.14 """ return self._get_style(float, sv.RANGEMIN) @min.setter def min(self,value): self._set_style(float(value), sv.RANGEMIN) @property def max(self): """`float` or `None`: The maximum cutoff value. The ``include_max`` must be set to `True`:: >>> plot.contour(0).color_cutoff.include_max = True >>> plot.contour(0).color_cutoff.max = None """ return self._get_style(float, sv.RANGEMAX) @max.setter def max(self,value): self._set_style(float(value), sv.RANGEMAX) @property def inverted(self): """`bool`: Cuts values outside the range instead of inside. .. code-block:: python >>> plot.contour(0).color_cutoff.inverted = True """ return self._get_style(bool, sv.INVERTCUTOFF) @inverted.setter def inverted(self,value): self._set_style(bool(value), sv.INVERTCUTOFF)
[docs] class ContourColormapFilter(ContourGroupStyle): """Controls how the colormap is rendered for a given contour. .. code-block:: python :emphasize-lines: 27-31 from os import path import tecplot as tp from tecplot.constant import * # load the data examples_dir = tp.session.tecplot_examples_directory() datafile = path.join(examples_dir,'SimpleData','HeatExchanger.plt') ds = tp.data.load_tecplot(datafile) # set plot type to 2D field plot frame = tp.active_frame() frame.plot_type = PlotType.Cartesian2D plot = frame.plot() # show boundary faces and contours surfaces = plot.fieldmap(0).surfaces surfaces.surfaces_to_plot = SurfacesToPlot.BoundaryFaces plot.show_contour = True # by default, contour 0 is the one that's shown, # set the contour's variable, colormap and number of levels contour = plot.contour(0) contour.variable = ds.variable('P(N)') # cycle through the colormap three times and reversed # show a faithful (non-approximate) continuous distribution contour_filter = contour.colormap_filter contour_filter.num_cycles = 3 contour_filter.reversed = True contour_filter.fast_continuous_flood = False contour_filter.distribution = ColorMapDistribution.Continuous # ensure consistent output between interactive (connected) and batch contour.levels.reset_to_nice() # save image to file tp.export.save_png('contour_filtered.png', 600, supersample=3) .. figure:: /_static/images/contour_filtered.png :width: 300px :figwidth: 300px """ def __init__(self, contour): self.contour = contour super().__init__(self.contour, sv.COLORMAPFILTER)
[docs] def override(self, index): """Returns a `ContourColormapOverride` object by index. Parameters: index (`int`): The index of the colormap override object. Returns: `ContourColormapOverride`: The class controlling the specific contour colormap override requested by index. Example:: >>> cmap_override = plot.contour(0).colormap_filter.override(0) >>> cmap_override.show = True """ return ContourColormapOverride(index, self)
@property def zebra_shade(self): """`ContourColormapZebraShade`: Returns a `ContourColormapZebraShade` filtering object. Example usage:: >>> zebra = plot.contour(0).colormap_filter.zebra_shade >>> zebra.show = True """ return ContourColormapZebraShade(self) @property def show_overrides(self): """`bool`: Enable the colormap overrides in this contour group. The overrides themselves must be turned on as well for this to have an effect on the resulting plot:: >>> contour = plot.contour(0) >>> cmap_filter = contour.colormap_filter >>> cmap_filter.show_overrides = True >>> cmap_filter.override(0).show = True """ return self._get_style(bool, sv.COLORMAPOVERRIDEACTIVE) @show_overrides.setter def show_overrides(self, show): self._set_style(bool(show), sv.COLORMAPOVERRIDEACTIVE) @property def num_cycles(self): """`int`: Number of cycles to repeat the colormap. >>> plot.contour(0).colormap_filter.num_cycles = 3 """ return self._get_style(int, sv.COLORMAPCYCLES) @num_cycles.setter def num_cycles(self,value): self._set_style(int(value), sv.COLORMAPCYCLES) @property def distribution(self): """`ColorMapDistribution`: Rendering style of the colormap. Possible values: `Banded` A solid color is assigned for all values within the band between two levels. `Continuous` The color distribution assigns linearly varying colors to all multi-colored objects or contour flooded regions. Example:: >>> from tecplot.constant import ColorMapDistribution >>> cmap_filter = plot.contour(0).colormap_filter >>> cmap_filter.distribution = ColorMapDistribution.Banded """ return self._get_style(ColorMapDistribution, sv.COLORMAPDISTRIBUTION) @distribution.setter def distribution(self,value): self._set_style(ColorMapDistribution(value), sv.COLORMAPDISTRIBUTION) @property def reversed(self): """`bool`: Reverse the colormap. >>> plot.contour(0).colormap_filter.reversed = True """ return self._get_style(bool, sv.REVERSECOLORMAP) @reversed.setter def reversed(self,value): self._set_style(bool(value), sv.REVERSECOLORMAP) @property def fast_continuous_flood(self): """`bool`: Use a fast approximation to continuously flood the colormap. Causes each cell to be flooded using interpolation between the color values at each node. When the transition from a color at one node to another node crosses over the boundary between control points in the color spectrum, fast flooding may produce colors not in the spectrum. Setting this to `False` is slower, but more accurate:: >>> cmap_filter = plot.contour(0).colormap_filter >>> cmap_filter.fast_continuous_flood = True """ return self._get_style(bool, sv.USEFASTAPPROXCONTINUOUSFLOOD) @fast_continuous_flood.setter def fast_continuous_flood(self,value): self._set_style(bool(value), sv.USEFASTAPPROXCONTINUOUSFLOOD) @property def continuous_min(self): """`float`: Lower limit for continuous colormap flooding. Example usage:: >>> from tecplot.constant import ColorMapDistribution >>> cmap_filter = plot.contour(0).colormap_filter >>> cmap_filter.distribution = ColorMapDistribution.Continuous >>> cmap_filter.continuous_min = 3.1415 """ return self._get_style(float, sv.CONTINUOUSCOLOR, sv.CMIN) @continuous_min.setter def continuous_min(self, value): self._set_style(float(value), sv.CONTINUOUSCOLOR, sv.CMIN) @property def continuous_max(self): """`float`: Upper limit for continuous colormap flooding. Example set the limits to the (min, max) of a variable in a specific zone:: >>> from tecplot.constant import ColorMapDistribution >>> cmap_filter = plot.contour(0).colormap_filter >>> cmap_filter.distribution = ColorMapDistribution.Continuous >>> pressure = dataset.variable('Pressure').values('My Zone') >>> cmap_filter.continuous_min = pressure.min() >>> cmap_filter.continuous_max = pressure.max() """ return self._get_style(float, sv.CONTINUOUSCOLOR, sv.CMAX) @continuous_max.setter def continuous_max(self, value): self._set_style(float(value), sv.CONTINUOUSCOLOR, sv.CMAX)
[docs] class ContourLabels(ContourGroupStyle): """Contour line label style, position and alignment control. These are labels that identify particular contour levels either by value or optionally, by number starting from one. The plot type must be lines or lines and flood in order to see them: .. code-block:: python :emphasize-lines: 18-23 from os import path import tecplot as tp from tecplot.constant import Color, ContourType, SurfacesToPlot # load the data examples_dir = tp.session.tecplot_examples_directory() datafile = path.join(examples_dir,'SimpleData','Pyramid.plt') dataset = tp.data.load_tecplot(datafile) # show boundary faces and contours plot = tp.active_frame().plot() plot.fieldmap(0).contour.contour_type = ContourType.Lines surfaces = plot.fieldmap(0).surfaces surfaces.surfaces_to_plot = SurfacesToPlot.BoundaryFaces plot.show_contour = True # set contour label style contour_labels = plot.contour(0).labels contour_labels.show = True contour_labels.auto_align = False contour_labels.color = Color.Blue contour_labels.background_color = Color.White contour_labels.margin = 20 # ensure consistent output between interactive (connected) and batch plot.contour(0).levels.reset_to_nice() tp.export.save_png('contour_labels.png', 600, supersample=3) .. figure:: /_static/images/contour_labels.png :width: 300px :figwidth: 300px """ def __init__(self, contour): self.contour = contour super().__init__(self.contour, sv.LABELS) @property def show(self): """`bool`: Show the contour line labels. Contour lines must be on for this to have any effect:: >>> from tecplot.constant import ContourType >>> plot.fieldmap(0).contour.contour_type = ContourType.Lines >>> plot.contour(0).labels.show = True """ return self._get_style(bool, sv.SHOW) @show.setter def show(self,value): self._set_style(bool(value), sv.SHOW) @property def auto_align(self): """`bool`: Automatically align the labels with the contour lines. This causes the flow of the text to be aligned with the contour lines. Otherwise, the labels are aligned with the frame:: >>> from tecplot.constant import ContourType >>> plot.fieldmap(0).contour.contour_type = ContourType.Lines >>> plot.contour(0).labels.show = True >>> plot.contour(0).labels.auto_align = False """ return self._get_style(bool, sv.ALIGNAUTOLABELS) @auto_align.setter def auto_align(self,value): self._set_style(bool(value), sv.ALIGNAUTOLABELS) @property def spacing(self): """`float`: Spacing between labels along the contour lines. This is the distance between each label along each contour line in percentage of the frame height:: >>> from tecplot.constant import ContourType >>> plot.fieldmap(0).contour.contour_type = ContourType.Lines >>> plot.contour(0).labels.show = True >>> plot.contour(0).labels.spacing = 20 """ return self._get_style(float, sv.AUTOLABELSPACING) @spacing.setter def spacing(self,value): self._set_style(float(value), sv.AUTOLABELSPACING) @property def step(self): """`int`: Number of contour lines from one label to the next. This is the number of contour bands between lines that are to be labeled:: >>> from tecplot.constant import ContourType >>> plot.fieldmap(0).contour.contour_type = ContourType.Lines >>> plot.contour(0).labels.show = True >>> plot.contour(0).labels.step = 4 """ return self._get_style(int, sv.AUTOLEVELSKIP) @step.setter def step(self,value): self._set_style(int(value), sv.AUTOLEVELSKIP) @property def font(self): """`text.Font`: `text.Font` used to show the labels. Example:: >>> from tecplot.constant import Color, ContourType >>> plot.fieldmap(0).contour.contour_type = ContourType.Lines >>> plot.contour(0).labels.show = True >>> plot.contour(0).labels.font.size = 3.5 """ return text.Font(self) @property def color(self): """`Color`: Text color of the labels. Example:: >>> from tecplot.constant import Color, ContourType >>> plot.fieldmap(0).contour.contour_type = ContourType.Lines >>> plot.contour(0).labels.show = True >>> plot.contour(0).labels.color Color.Blue """ return self._get_style(Color, sv.COLOR) @color.setter def color(self,value): self._set_style(Color(value), sv.COLOR) @property def filled(self): """`bool`: Fill the background area behind the text labels. The background can be filled with a color or disabled (made transparent) by setting this property to `False`:: >>> from tecplot.constant import Color, ContourType >>> plot.fieldmap(0).contour.contour_type = ContourType.Lines >>> plot.contour(0).labels.show = True >>> plot.contour(0).labels.filled = True >>> plot.contour(0).labels.background_color = Color.Blue >>> plot.contour(1).labels.show = True >>> plot.contour(1).labels.filled = False """ return self._get_style(bool, sv.ISFILLED) @filled.setter def filled(self, value): self._set_style(bool(value), sv.ISFILLED) @property def background_color(self): """`Color`: Background fill color behind the text labels. The ``filled`` attribute must be set to `True`:: >>> from tecplot.constant import Color, ContourType >>> plot.fieldmap(0).contour.contour_type = ContourType.Lines >>> plot.contour(0).labels.show = True >>> plot.contour(0).labels.background_color = Color.Blue """ return self._get_style(Color, sv.FILLCOLOR) @background_color.setter def background_color(self,value): self._set_style(Color(value), sv.FILLCOLOR) @property def auto_generate(self): """`bool`: Automatically generate labels along contour lines. This causes a new set of contour labels to be created at each redraw:: >>> from tecplot.constant import Color, ContourType >>> plot.fieldmap(0).contour.contour_type = ContourType.Lines >>> plot.contour(0).labels.show = True >>> plot.contour(0).labels.auto_generate = True """ return self._get_style(bool, sv.GENERATEAUTOLABELS) @auto_generate.setter def auto_generate(self,value): self._set_style(bool(value), sv.GENERATEAUTOLABELS) @property def label_by_level(self): """`bool`: Use the contour numbers as the label instead of the data value. Contour level numbers start from one when drawn. Example usage:: >>> from tecplot.constant import Color, ContourType >>> plot.fieldmap(0).contour.contour_type = ContourType.Lines >>> plot.contour(0).labels.show = True >>> plot.contour(0).labels.label_by_level = True """ return not self._get_style(bool, sv.LABELWITHVALUE) @label_by_level.setter def label_by_level(self,value): self._set_style(not bool(value), sv.LABELWITHVALUE) @property def margin(self): """`float` in percentage of the text height.: Spacing around the text and the filled background area. Contour numbers start from one when drawn. Example usage:: >>> from tecplot.constant import Color, ContourType >>> plot.fieldmap(0).contour.contour_type = ContourType.Lines >>> plot.contour(0).labels.show = True >>> plot.contour(0).labels.background_color = Color.Yellow >>> plot.contour(0).labels.margin = 20 """ return self._get_style(float, sv.MARGIN) @margin.setter def margin(self,value): self._set_style(float(value), sv.MARGIN) @property def format(self): """`LabelFormat`: Number formatting for contour labels. Example usage:: >>> from tecplot.constant import NumberFormat >>> contour = plot.contour(0) >>> contour.labels.format.format_type = NumberFormat.Integer """ return text.LabelFormat(self)
[docs] @lock_attributes class ContourLevels(object): """List of contour level values. A contour level is a value at which contour lines are drawn, or for banded contour flooding, the border between different colors of flooding. Initially, each contour group consists of approximately 10 levels evenly spaced over the *z* coordinate in the `Frame <layout.Frame>`'s `Dataset <data.Dataset>`. These values can be manipulated with the `ContourLevels` object obtained via the `ContourGroup.levels` attribute: .. code-block:: python :emphasize-lines: 11-12 from os import path import numpy as np import tecplot as tp # load layout examples_dir = tp.session.tecplot_examples_directory() example_layout = path.join(examples_dir,'SimpleData','3ElementWing.lpk') tp.load_layout(example_layout) frame = tp.active_frame() levels = frame.plot().contour(0).levels levels.reset_levels(np.linspace(55000,115000,61)) # save image to file tp.export.save_png('contour_adjusted_levels.png', 600, supersample=3) .. figure:: /_static/images/contour_adjusted_levels.png :width: 300px :figwidth: 300px .. note:: The streamtraces in the plot above is a side-effect of settings in layout file used. For more information about streamtraces, see the `plot.Streamtraces` class reference. """ def __init__(self, contour): self.contour = contour @lock() def _ContourLevelX(self, arglist): arglist[sv.CONTOURGROUP] = self.contour.index+1 with self.contour.plot.frame.activated(): _tecutil.ContourLevelX(arglist) def _data(self): with self.contour.plot.frame.activated(): success,n,values = _tecutil.ContourGetLevels(self.contour.index+1) if not success: raise TecplotLogicError('Could not query contour levels.') return [values[i] for i in range(n)] def __len__(self): return len(self._data()) def __iter__(self): for i in self._data(): yield i def __getitem__(self,i): return self._data()[i]
[docs] def add(self, *values): """Adds new levels to the existing list. Parameters: *values (`floats <float>`): The level values to be added to the `ContourGroup`. The values added are inserted into the list of levels in ascending order:: >>> levels = plot.contour(0).levels >>> list(levels) [0.0, 1.0, 2.0, 3.0, 4.0, 5.0] >>> levels.add(3.14159) >>> list(levels) [0.0, 1.0, 2.0, 3.0, 3.14159, 4.0, 5.0] """ values = flatten_args(*values) with tecutil.ArgList() as arglist: arglist[sv.CONTOURLEVELACTION] = ContourLevelAction.Add arglist[sv.NUMVALUES] = len(values) arglist[sv.RAWDATA] = map(float, values) self._ContourLevelX(arglist)
[docs] def reset(self, num_levels=15): """Resets the levels to the number specified. Parameters: num_levels (`int`): Number of levels. (default: 10) This will reset the contour levels to a set of evenly distributed values spanning the entire range of the currently selected contouring variable:: >>> plot.contour(0).levels.reset(30) """ with tecutil.ArgList() as arglist: arglist[sv.CONTOURLEVELACTION] = ContourLevelAction.Reset arglist[sv.NUMVALUES] = int(num_levels) self._ContourLevelX(arglist)
[docs] def reset_levels(self, *values): """Resets the levels to the values specified. Parameters: *values (`floats <float>`): The level values to be added to the `ContourGroup`. This method replaces the current set of contour levels with a new set. Here, we set the levels to go from 0 to 100 in steps of 5:: >>> plot.contour(0).levels.reset_levels(*range(0,101,5)) """ values = flatten_args(*values) with tecutil.ArgList() as arglist: arglist[sv.CONTOURLEVELACTION] = ContourLevelAction.New arglist[sv.NUMVALUES] = len(values) arglist[sv.RAWDATA] = map(float, values) self._ContourLevelX(arglist)
[docs] def reset_to_nice(self, num_levels=15): """Approximately resets the levels to the number specified. Parameters: num_levels (`int`): Approximate number of levels to create. (default: 15) This will reset the contour levels to a set of evenly distributed values that approximately spans the range of the currently selected contouring variable. Exact range and number of levels will be adjusted to make the contour levels have "nice" values:: >>> plot.contour(0).levels.reset_to_nice(50) """ with tecutil.ArgList() as arglist: arglist[sv.CONTOURLEVELACTION] = ContourLevelAction.ResetToNice arglist[sv.APPROXNUMVALUES] = int(num_levels) self._ContourLevelX(arglist)
[docs] def delete_range(self, min_value, max_value): """Inclusively, deletes all levels within a specified range. Parameters: min_value (`float`): Minimum value to remove. max_value (`float`): Maximum value to remove. This method deletes all contour levels between the specified minimum and maximum values of the contour variable (inclusive):: >>> plot.contour(0).levels.delete_range(0.5, 1.5) """ with tecutil.ArgList() as arglist: arglist[sv.CONTOURLEVELACTION] = ContourLevelAction.DeleteRange arglist[sv.RANGEMIN] = float(min_value) arglist[sv.RANGEMAX] = float(max_value) self._ContourLevelX(arglist)
[docs] def delete_nearest(self, value): """Removes the level closest to the specified value. Parameters: value (`float`): Value of the level to remove. This method deletes the contour level with the value nearest the supplied value:: >>> plot.contour(0).levels.delete_nearest(3.14) """ with tecutil.ArgList() as arglist: arglist[sv.CONTOURLEVELACTION] = ContourLevelAction.DeleteNearest arglist[sv.RANGEMIN] = float(value) self._ContourLevelX(arglist)
[docs] class ContourLines(ContourGroupStyle): """Contour line style. This object sets the style of the contour lines once turned on: .. code-block:: python :emphasize-lines: 19-22 from os import path import tecplot as tp from tecplot.constant import (ContourLineMode, ContourType, SurfacesToPlot) # load the data examples_dir = tp.session.tecplot_examples_directory() datafile = path.join(examples_dir,'SimpleData','Pyramid.plt') dataset = tp.data.load_tecplot(datafile) # show boundary faces and contours plot = tp.active_frame().plot() plot.fieldmap(0).contour.contour_type = ContourType.Lines surfaces = plot.fieldmap(0).surfaces surfaces.surfaces_to_plot = SurfacesToPlot.BoundaryFaces plot.show_contour = True # set contour line style contour_lines = plot.contour(0).lines contour_lines.mode = ContourLineMode.SkipToSolid contour_lines.step = 4 contour_lines.pattern_length = 2 # ensure consistent output between interactive (connected) and batch plot.contour(0).levels.reset_to_nice() tp.export.save_png('contour_lines.png', 600, supersample=3) .. figure:: /_static/images/contour_lines.png :width: 300px :figwidth: 300px """ def __init__(self, contour): self.contour = contour super().__init__(self.contour, sv.CONTOURLINESTYLE) @property def mode(self): """`ContourLineMode`: Type of lines to draw on the plot (`ContourLineMode`). Possible values: `UseZoneLineType` For each zone, draw the contour lines using the line pattern and pattern length specified in the `FieldmapContour` for the parent `Fieldmap`. If you are adding contour lines to polyhedral zones, the patterns will not be continuous from one cell to the next and the pattern will restart at every cell boundary. `SkipToSolid` Draw dashed lines between each pair of solid lines which are spaced out by the `ContourLines.step` property. This will override any line pattern or thickness setting in the parent `Fieldmap`'s `FieldmapContour` object. `DashNegative` Draw lines of positive contour variable value as solid lines and lines of negative contour variable value as dashed lines. This will override any line pattern or thickness setting in the parent `Fieldmap`'s `FieldmapContour` object. Example:: >>> from tecplot.constant import ContourLineMode >>> lines = plot.contour(0).lines >>> lines.mode = ContourLineMode.DashNegative """ return self._get_style(ContourLineMode, sv.CONTOURLINEMODE) @mode.setter def mode(self,value): self._set_style(ContourLineMode(value), sv.CONTOURLINEMODE) @property def step(self): """`int`: Number of lines to step for `SkipToSolid` line mode (`int`). Example:: >>> from tecplot.constant import ContourLineMode >>> lines = plot.contour(0).lines >>> lines.mode = ContourLineMode.SkipToSolid >>> lines.step = 5 """ return self._get_style(int, sv.LINESKIP) @step.setter def step(self,value): self._set_style(int(value), sv.LINESKIP) @property def pattern_length(self): """`float`: Length of dashed lines and space between dashes (`float`). The length is in percentage of the frame height:: >>> from tecplot.constant import ContourLineMode >>> lines = plot.contour(0).lines >>> lines.mode = ContourLineMode.SkipToSolid >>> lines.step = 5 >>> lines.pattern_length = 5 """ return self._get_style(float, sv.PATTERNLENGTH) @pattern_length.setter def pattern_length(self,value): self._set_style(float(value), sv.PATTERNLENGTH)
[docs] class ContourGroup(session.Style): """Contouring of a variable using a colormap. This object controls the style for a specific contour group within a `Frame <layout.Frame>`. Contour levels, colormap and contour lines are accessed through this class: .. code-block:: python :emphasize-lines: 10-14 from os import path import tecplot as tp from tecplot.constant import * # load data examples_dir = tp.session.tecplot_examples_directory() datafile = path.join(examples_dir,'SimpleData','CircularContour.plt') dataset = tp.data.load_tecplot(datafile) plot = dataset.frame.plot() plot.show_contour = True contour = plot.contour(0) contour.variable = dataset.variable('Mix') contour.colormap_name = 'Magma' # ensure consistent output between interactive (connected) and batch contour.levels.reset_to_nice() # save image to file tp.export.save_png('contour_magma.png', 600, supersample=3) .. figure:: /_static/images/contour_magma.png :width: 300px :figwidth: 300px There are a fixed number of contour groups available for each plot. Others can be enabled and modified by specifying an index other than zero:: >>> contour3 = plot.contour(3) >>> contour3.variable = dataset.variable('U') """ def __init__(self, index, plot): if __debug__: assert 0 <= index < 8, 'Contour index out of range (must be < 8)' self.index = Index(index) self.plot = plot super().__init__(sv.GLOBALCONTOUR, uniqueid=self.plot.frame.uid, offset1=self.index) def __eq__(self, obj): return (self.index == obj.index) and (self.plot == obj.plot) @property def variable_index(self): """Zero-based index of the `Variable` being contoured. .. code-block:: python >>> plot.contour(0).variable_index = dataset.variable('P').index The `Dataset <data.Dataset>` attached to this contour group's `Frame <layout.Frame>` is used:: >>> contour = plot.contour(0) >>> contour_var = frame.dataset.variable(contour.variable_index) >>> contour_var.index == contour.variable_index True """ return self._get_style(Index, sv.VAR) @variable_index.setter def variable_index(self, index): # Use the TecUtil X function to set the variable. # By using the X function to set the contour variable, we can set # the initialization mode to 'NiceResetLevels", # which is the GUI default. with lock(): with tecutil.ArgList() as arglist: arglist[sv.VAR] = index + 1 arglist[sv.CONTOURGROUP] = self.index + 1 arglist[sv.LEVELINITMODE] = \ ContourLevelsInitializationMode.NiceResetLevels if not _tecutil.ContourSetVariableX(arglist): raise TecplotSystemError() @property def variable(self): """The `Variable` being contoured. The variable must belong to the `Dataset <data.Dataset>` attached to the `Frame <layout.Frame>` that holds this `ContourGroup`. Example usage:: >>> plot.contour(0).variable = dataset.variable('P') """ return self.plot.frame.dataset.variable(self.variable_index) @variable.setter def variable(self, variable): if __debug__: if variable not in self.plot.frame.dataset: raise TecplotLogicError('Variable not in dataset.') self.variable_index = variable.index @property def color_cutoff(self): """`ContourColorCutoff`: `ContourColorCutoff` object controlling color cutoff min/max. >>> cutoff = plot.contour(0).color_cutoff >>> cutoff.min = 3.14 """ return ContourColorCutoff(self) @property def colormap_filter(self): """`ContourColormapFilter`: `ContourColormapFilter` object controlling colormap style properties. >>> plot.contour(0).colormap_filter.reverse = True """ return ContourColormapFilter(self) @property def labels(self): """`ContourLabels`: `ContourLabels` object controlling contour line labels. Lines must be turned on through the associated fieldmap object for style changes to be meaningful:: >>> plot.fieldmap(0).contour.contour_type = ContourType.Lines >>> plot.contour(0).labels.show = True """ return ContourLabels(self) @property def legend(self): """`ContourLegend`: `ContourLegend` associated with this `ContourGroup`. This object controls the attributes of the contour legend associated with this `ContourGroup`. Example usage:: >>> plot.contour(0).legend.show = True """ return legend.ContourLegend(self) @property def levels(self): """`ContourLevels`: `ContourLevels` holding the list of contour levels. This object controls the values of the contour levels. Values can be added, deleted or overridden completely:: >>> plot.contour(0).levels.reset_to_nice(15) """ return ContourLevels(self) @property def lines(self): """`ContourLines`: `ContourLines` object controlling contour line style. Lines must be turned on through the associated fieldmap object for style changes to be meaningful:: >>> plot.fieldmap(0).contour.contour_type = ContourType.Lines >>> plot.contour(0).lines.mode = ContourLineMode.DashNegative """ return ContourLines(self) @property def default_num_levels(self): """`int`: Default target number (`int`) of levels used when resetting. Example:: >>> plot.contour(0).default_num_levels = 20 """ return self._get_style(int, sv.DEFNUMLEVELS) @default_num_levels.setter def default_num_levels(self, value): self._set_style(int(value), sv.DEFNUMLEVELS) @property def colormap_name(self): """`str`: The name of the colormap (`str`) to be used. Example:: >>> plot.contour(0).colormap_name = 'Sequential - Yellow/Green/Blue' """ return self._get_style(str, sv.COLORMAPNAME) @colormap_name.setter def colormap_name(self,value): self._set_style(str(value), sv.COLORMAPNAME)