
Data Format Guide 
Tecplot 360 2025 Release 1

Tecplot, Inc.



Copyright © 1988-2025 Tecplot, Inc. All rights reserved worldwide. See the
complete legal notice in the copyright section of this document.

Table of Contents
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6

Subzone Loading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6

Creating Data Files for Tecplot 360 and Focus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6

Best Practices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7

Auxiliary Data Influencing Tecplot 360’s Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9

CFDA Auxiliary Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9

Data Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12

Ordered Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  13

Finite Element Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  14

Line Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  15

Surface Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  16

Volume Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  16

Finite Element Data Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  17

Variable Location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  17

Face Neighbors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  17

Working with Unorganized Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  18

Example - Unorganized Three-Dimensional Volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  19

Time and Date Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  20

Binary Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  20

Getting Started . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  21

Viewing Your Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  23

Partitioned Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  23

Binary File Compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  24

Deprecated Binary Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  24

Character Strings in FORTRAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  25

Boolean Flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  25

Binary Data File Function Calling Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  25

Additional Requirement for Parallel Output. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  26

Non-partitioned Zones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  26

Partitioned Zones. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  27

Writing to Multiple Binary Data Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  27

Linking with the TecIO Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  28

Linux/Macintosh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  28

1



Windows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  29

Notes for Windows Programmers using Fortran. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  29

Binary Data File Function Reference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  29

TECAUXSTR142 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  29

TECDAT142 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  30

TECEND142 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  33

TECFACE142 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  33

TECFEMIXEDPTN142 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  36

TECFEPTN142 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  38

TECFIL142 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  39

TECFLUSH142 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  40

TECFOREIGN142 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  41

TECGEO142 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  42

TECIJKPTN142 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  47

TECINI142 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  48

TECLAB142 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  50

TECMPIINIT142 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  51

TECNOD142 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  52

TECNODE142 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  53

TECPOLYFACE142 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  54

TECPOLYBCONN142 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  56

TECPOLYZNE142 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  57

TECTXT142 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  61

TECUSR142 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  64

TECVAUXSTR142 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  65

TECZAUXSTR142 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  66

TECZNE142 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  67

TECZNEFEMIXED142 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  74

TECZNEMAP142 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  76

Defining Polyhedral and Polygonal Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  77

Boundary Faces and Boundary Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  78

FaceNodeCounts and FaceNodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  79

FaceRightElems and FaceLeftElems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  80

FaceBoundaryConnectionElements and Zones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  82

Partially Obscured Boundary Faces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  82

Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  83

Face Neighbors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  83

Polygonal Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  92

2



Multiple Polyhedral Zones. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  98

Multiple Polygonal Zones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  112

Polyhedral Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  128

IJ-ordered zone. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  132

Switching Between Two Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  136

Text Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  140

Partitioned Data Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  142

ASCII Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  143

Converting ASCII to Binary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  143

Syntax Rules & Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  143

ASCII File Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  144

File Header . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  145

Zone Record . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  146

Text Record . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  162

Geometry Record . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  165

Custom Labels Record . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  169

Data Set Auxiliary Data Record . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  169

Variable Auxiliary Data Record . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  170

ASCII Data File Parameter Assignment Values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  171

Ordered Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  172

I-Ordered Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  172

IJ-Ordered Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  172

IJK-Ordered Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  172

Ordered Data Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  173

Finite Element Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  180

Variable and Connectivity List Sharing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  182

Finite Element Data Set Examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  184

ASCII Data File Conversion to Binary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  197

Preplot Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  197

Preplot Examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  197

Reading SZL Data Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  198

Getting Started with the API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  199

Passing Arguments and Receiving Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  199

Indexing and Zero Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  200

Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  200

API Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  200

Files and Data Sets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  201

Geometries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  201

3



Text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  203

Custom Label Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  204

Strings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  204

Auxiliary Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  204

Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  205

Zones. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  206

Connectivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  207

Data Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  208

Opening and Closing Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  208

Dealing with Strings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  209

Reading Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  210

Reading Connectivity Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  211

Accessing Data Values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  212

Reading Auxiliary Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  213

Reading Geometry and Text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  214

Reading Custom Labels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  214

Example Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  215

Writing SZL Data Files (New API) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  215

Getting Started with the API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  215

Passing Arguments and Receiving Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  216

Indexing and Zero Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  216

Return Values and Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  216

API Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  217

Initialization and File Handling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  217

Auxiliary Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  217

Zones, Variables, and Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  218

Partitioning and MPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  219

Connectivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  219

Opening and Closing Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  220

Working With Partitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  220

Overlap and Ghosts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  221

Partitioning Zones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  221

Writing Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  222

Passive and Shared Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  222

Writing IJK-Ordered Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  223

Writing Finite Element Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  223

Writing Face Neighbors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  223

Writing Auxiliary Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  224

4



Other Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  224

Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  225

SZCOMBINE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  225

Binary Data File Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  226

Meaningful Integer Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  240

Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  244

Copyright . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  249

5



Introduction
Tecplot 360 can read data produced in many different formats using the data loaders provided with
the product. This manual describes a complementary approach: writing your data in the Tecplot 360
data format so it can be read natively, providing the best experience for Tecplot 360 users. This Data
Format Guide includes the following topics:

• Data Structure Learn about the different types of data structure available in Tecplot 360 and how to
use them.

• Binary Data Refer to this chapter for details on outputting data in Tecplot 360’s binary file format
(.plt) or the newer subzone load format (.szplt) using the "classic" APIs in the TecIO library, a
collection of routines we provide that you can use to write files in these format from your software.

• ASCII Data We strongly recommend that you create binary data files. However, we provide the
ASCII data format, as it is very convenient for producing small, simple files.

• Reading SZL Data Files and Writing SZL Data Files (New API) describe using newer TecIO APIs to
read and write files in Tecplot’s SZL (.szplt) binary format.

• Binary Data File Format, documents the .plt binary file format.

• Glossary Refer to the Glossary for the definitions of terms used throughout the manual.


Before continuing to either the Binary or ASCII chapter, please review this overview
of Best Practices.

Subzone Loading
Tecplot 360 introduced a new subzone file format with extension .szplt that is optimized for loading
partial zones ("subzones") as individual chunks of data are needed for a plot or for other operations.
Subzone loading improves performance substantially for many common operations on large cases
while also reducing RAM usage. If your software generates large data files, we strongly encourage you
to support this format, as it will significantly improve your user experience. You can use the same API
as is used to write .plt files, so if your program already uses TecIO, it is straightforward to upgrade it
to write .szplt files instead of, or in addition to, .plt files. For new development, we suggest using the
newer API described in Writing SZL Data Files (New API).

Creating Data Files for Tecplot 360 and Focus


For the purposes of this discussion, "polyhedral" refers to either polyhedral or
polygonal zones.

If you intend to create data files that will load in both Tecplot 360 and Tecplot Focus, be aware that
polyhedral and polygonal zones are not supported by Tecplot Focus. If any of the zones in a given data
file are polyhedral, you will not be able to load the data file into Tecplot Focus. To create data files that

6



will load in both products, you must use either ordered zones or "classic" (cell-based) finite element
zones (triangular, quadrilateral, tetrahedral or brick elements).

The TecIO library file included with each release of Tecplot Focus is identical to the library file
included with the corresponding release of Tecplot 360 and can create polyhedral zones, even though
you will not be able to load the data files into Tecplot Focus. Similarly, this guide is largely the same for
both products; we have included reminders throughout about this Tecplot Focus limitation.

The subzone load file format (.szplt) is not supported by Tecplot Focus, nor by legacy versions of
Tecplot 360 (versions without "EX" in their designation). Current versions of Tecplot Focus (2016 R1
and later), derived from Tecplot 360, also limit the number of data elements in a single data set to 5
million.

Best Practices
Users who wish to generate native Tecplot 360 data files automatically from applications such as
complex flow solvers have a number of options for outputting data into Tecplot’s data format. This
section outlines a few "best practices" for outputting your data into Tecplot 360 data format.

Create Binary Data Files (.plt or .szplt) instead of ASCII (.dat)

Binary data files are more efficient than ASCII files, in terms of disk space and time to first image. To
create binary data files, you may use functions provided in the TecIO library. To create ASCII files, you
can write out plain text in the usual manner.

There are some cases where ASCII files are preferred. Create ASCII files when:

• Your data files are small.

• Your application runs on a platform for which the TecIO library is not provided. If this is the case,
please contact us at support@tecplot.com. There may be a way to resolve this issue.

• You wish users to be able to view or edit the data in a text editor.

Offer the Option to Write Subzone Load Files (.szplt)

• Users of Tecplot 360 will appreciate the improved experience provided by these files, especially for
large, 3-dimensional, non-Polyhedral cases.

• Use TECFLUSH142 to reduce memory usage when writing SZL files. TECFLUSH142 must be called after
writing a complete zone.

• Use SZL to allow Read capability.

Use Block Format instead of Point Format

Block format is by far the most efficient format when it comes to loading the file into Tecplot 360. If
your data files are small and you can only obtain the data in a point-like format (for example, with a
spreadsheet), then using point format is acceptable.

7

mailto:support@tecplot.com



Binary files can only be written in block format. Point format is allowed for ASCII
files, but running the preplot utility will convert the data to block format.

Add Auxiliary data to Preset Variable Assignments in Tecplot 360

Zone Auxiliary data can be used to give Tecplot 360 hints about properties of your data. For example, it
can be used to set the defaults for which variables to use for certain kinds of plots. Auxiliary data is
supported by both binary and ASCII formats. Refer to TECAUXSTR142 or Data Set Auxiliary Data Record
for information on working with auxiliary data in binary or ASCII data files, respectively.

Transient Data

• Data Sharing

• Share variables whenever possible.

Variable sharing is commonly used for the spatial variables (X, Y, and Z) when you have many sets of
data that use the same basic grid. This saves disk space, as well as memory when the data is loaded
into Tecplot 360. In addition, the benefits are compounded with scratch data derived from these
variables because it is also shared within Tecplot 360. See also TECZNE142 and TECPOLYZNE142 (for binary
data) or Variable and Connectivity List Sharing (for ASCII data).

• Do not share variables between 3D and 2D zones

• Consider using Grid and Solution files for transient data.

• Use one object or mesh per StrandID which consists of multiple solution times. See TECZNE142 or
TECPOLYZNE142 for more information.

Parallel Output

• Use TecIO-MPI which writes SZL files in parallel.

• Be sure to write to a parallel file system.

• Maximize striping for efficiency.

Passive Variables

Tecplot 360 can manage many data sets at the same time. However, within a given data set you must
supply the same number of variables for each zone. In some cases you may have data where there are
many variables and, for some of the zones some of those variables are not important or not calculated.
You can set selected variables in those zones to be passive. A passive variable is one that will always
return the value zero if queried (e.g. in a probe) but will not involve itself in operations such as the
calculations of the min and max range. This is very useful when calculating default contour levels.

Use the Native Byte Ordering for the Target Machine

When you create binary data, you can elect to produce these files in either Motorola (big-endian) byte
order or Intel (little-endian) byte order. Today’s most popular platforms all use Intel byte order, and

8



generally this is the order you should use when writing binary data. The exceptions involve older
platforms no longer supported by Tecplot. If you are using such legacy platforms, it can improve
performance to write the binary data in the order native to the platform on which it will be viewed, if
this is known, even though Tecplot 360 will load data with either byte order. For See the notes about
this option in the User’s Manual for the Preplot flag.

• SZL doesn’t support big-endian byte ordering and only supports Native Byte Ordering at this time.
TECFOREIGN142 has not yet been implemented in the SZL API.

Auxiliary Data Influencing Tecplot 360’s Behavior
Behavior in Tecplot is influenced by the presence of particular auxiliary data assignments:

• If axis variables X, Y or Z are not assigned, the dataset auxiliary data is searched for
"Common.XVar", "Common.YVar", and "Common.ZVar". If found, and one or more of the auxiliary
data items contains a valid dataset variable number, it is assigned to the corresponding axis
variable.

• If vector variables, U, V or W are not assigned, the dataset auxiliary data is searched for
"Common.UVar", "Common.VVar", and "Common.WVar". If found, and one or more of the auxiliary
data items contains a valid dataset variable number, it is assigned to the corresponding vector
variable.

• If the contour variable, C, is not assigned, the dataset auxiliary data is searched for "Common.CVar".
If found, and the auxiliary data item contains a valid dataset variable number, it is assigned to the
contour variable.

• Fieldmaps comprised of one or more zones having an auxiliary data item named,
"Common.IsBoundaryZone", with a value of "Yes", "Y", "True", "T", or "ON", are deactivated by
default, unless the zone’s auxiliary data also contains an item named,
"Common.BoundaryCondition", with a value of "Wall".

• If a transient dataset auxiliary data item of the name "Common.TransientZoneVisibility" is present,
it must be located in a dataset and its value is either "ZonesAtOrBeforeSolutionTime" or
"ZonesAtSolutionTime". "Common.TransientZoneVisibilitty" determines what is shown when no
zones with a given Strand ID exist at the current solution time, within a small time tolerance.

◦ ZonesAtOrBeforeSolutionTime: For each strand at a given solution time, the zones shown are
those that are at the solution time, within a tolerance. Except for the very last time step, if no
zones exist at the given solution time, zones shown are those from the first prior solution time
showing zones.

◦ ZonesAtSolutionTime: For each strand at a given solution time, the zones shown are those that
are at the solution time, within a tolerance.

CFDA Auxiliary Data

A number of aux data values will set values in dialogs available under the Analyze menu.

9

360-users-manual.pdf


• A dataset aux data variable "Common.Incompressible" set to "Yes", "Y", "True", "T", or "ON" will set
the Incompressible toggle in the Fluid Properties dialog.

• For incompressible flow, the density of the flow is taken from the value of data set aux data
variable "Common.Density"

• Several aux data variables may be used to set other values in the Analyze>Fluid Properties dialog.
For each of these, a constant value and a data set variable number may be specified. If only a
constant value is specified, then that value is used for calculations at all nodes or cells in the data
set. If a data set variable number is specified, then the value of that variable is used at each node or
cell, and the constant value is used only for reference (free-stream) value calculations.

Name Type Description

Common.SpecificHeat double For incompressible flow only, the specific heat of the
fluid.

Common.SpecificHeatVar int For incompressible flow only, the data set variable that
holds the value of specific heat.

Common.GasConstant double For compressible flow only, the gas constant of the fluid.

Common.GasConstantVar int For compressible flow only, the data set variable that
holds the value of the gas constant.

Common.Gamma double For compressible flow only, the ratio of specific heats.

Common.GammaVar int For compressible flow only, the data set variable that
holds the value of the ratio of specific heats.

Common.Viscosity double The value of the dynamic viscosity of the fluid.

Common.ViscosityVar int The data set variable that holds the value of the fluid
dynamic viscosity

Common.Conductivity double The value of the fluid thermal conductivity.

Common.ConductivityVar int The data set variable that holds the value of the fluid
thermal conductivity.

• Any zones marked with a "Common.IsBoundaryZone" value of "Yes", "Y", "True", "T", or "ON" are
also listed as boundaries in the Geometry and Boundaries dialog. The type of each boundary zone
is taken from the zone’s value of "Common.BoundaryCondition". Recognized boundary types are
"Interzone", "Inflow", "Outflow", "Wall", "Slip Wall", "Symmetry", and "Extrapolated".

• In addition to the zone aux data mentioned above for boundary assignments, some dataset aux
data affects settings in the Analyze>Geometry and Boundaries dialog:

Name Type Available Values Description

Common.Axisymmetric boolean "Yes", "Y", "True", "T", or
"ON"

Indicates that the solution
geometry is axisymmetric.

10



Name Type Available Values Description

Common.AxisOfSymmetryV
arAssignment

option "X" or "Y" For axisymmetric flow, the
axis variable used to define
the symmetry.

Common.AxisValue double any For axisymmetric flow, the
value of the axis variable
about which the flow is
symmetric.

• The following data set aux data variables affect settings in the Analyze>Field Variables dialog. Note
that only two of Common.PressureVar, Common.TemperatureVar, Common.DensityVar,
Common.StagnationEnergyVar and Common.MachNumberVar should be set. Also,
Common.DensityVar and Common.MachNumberVar should not be used for incompressible flow:

Name Type Description

Common.VectorVarsAreVel
ocity

boolean Set to "Y" to Indicate that the vector vars indicated by
Common.UVar, Common.VVar and Common.WVar are
velocity. Otherwise, they will be assumed to be or
momentum.

Common.PressureVar double The data set variable that holds values of pressure.

Common.TemperatureVar double The data set variable that holds values of temperature.

Common.DensityVar double For compressible flow only, the data set variable that
holds values of density.

Common.StagnationEnergy
Var

double The data set variable that holds values of stagnation
energy.

Common.MachNumberVar double For compressible flow

• Reference (free-stream) conditions may be set by the following dataset aux data variables, and will
be reflected in the Analyze/Reference Values dialog. Note that Common.ReferenceMachNumber,
Common.ReferenceDensity and Common.ReferenceSpeedOfSound should not be used for
incompressible flow:

Name Type Description

Common.ReferenceU double The reference X component of velocity.

Common.ReferenceV double The reference Y component of velocity.

Common.ReferenceMachNu
mber

double For compressible flow only, the reference Mach number.

Common.AngleOfAttack double The reference angle of attack.

Common.ReferencePressure double The reference pressure.

11



Name Type Description

Common.ReferenceDensity double For compressible flow only, the reference density.

Common.ReferenceTemper
ature

double The reference temperature.

Common.ReferenceSpeedOf
Sound

double For compressible flow only, the reference speed of sound.

• The following dataset aux data values may be set to identify dataset variables for turbulent flow
calculations. These settings will be reflected in the Analyze>Calculate Turbulence Functions dialog.
You should specify only two of these:

Name Type Description

Common.TurbulentKineticE
nergyVar

int The dataset variable that holds turbulent kinetic energy,
commonly referred to as "k".

Common.TurbulentDissipati
onRateVar

int The dataset variable that holds turbulent dissipation rate,
commonly referred to as "ε".

Common.TurbulentFrequen
cyVar

int The dataset variable that holds turbulent frequency,
commonly referred to as "ω".

Common.TurbulentViscosit
yVar

int The dataset variable that holds turbulent kinematic
viscosity.

Common.TurbulentDynami
cViscosityVar

int The dataset variable that holds turbulent dynamic
viscosity.

Data Structure
Tecplot 360 accommodates two different types of data: Ordered Data and Finite Element Data. Ordered
data is a set of points logically stored in a one-, two-, or three-dimensional array, where I, J, and K are
the index values within the array. The number of data points is the product of all of the dimensions
within the array. Finite-element data is arranged in two arrays, a variable array and a connectivity
matrix. The variable array is a collection of points in 2D or 3D space that are connected into polygonal
or polyhedral units called elements. The connections between the nodes are defined by the
connectivity matrix.

A connectivity list is used to define which nodes are included in each element of an ordered or cell-
based finite element zone. You should know your zone type and the number of elements in each zone
in order to create your connectivity list.

The number of nodes required for each element is implied by your zone type. For example, if you have
a finite element quadrilateral zone, you will have four nodes defined for each element. Likewise, you
must provide eight numbers for each cell in a BRICK zone, and three numbers for each element in a
TRIANGLE zone. If you have a cell that has a smaller number of nodes than that required by your zone

12



type, simply repeat a node number. For example, if you are working with a finite element
quadrilateral zone and you would like to create a triangular element, simply repeat a node in the list
(e.g., 1,4,5,5).

In the example below, the zone contains two quadrilateral elements. Therefore, the connectivity list
must have eight values. The first four values define the nodes that form Element 1. The second four
values define the nodes that form Element 2.

The connectivity list for this example would appear as follows:

ConnList[8] = {4,5,2,1,       /* nodes for Element 1 */
               5,6,3,2};      /* nodes for Element 2 */


It is important to provide your node list in either a clockwise or counter-clockwise
order. Otherwise, your cell will twist, and the element produced will be misshapen.

Ordered Data
Ordered data is defined by one, two, or three-dimensional logical arrays, dimensioned by IMAX, JMAX,
and KMAX. These arrays define the interconnections between nodes and cells. The variables can be
either nodal or cell-centered. Nodal variables are stored at the nodes; cell-centered values are stored
within the cells.

One-dimensional Ordered Data (I-ordered, J-ordered, or K-ordered)

A single dimensional array where either IMAX, JMAX or KMAX is greater
than or equal to one, and the others are equal to one. For nodal data, the
number of stored values is equal to IMAX * JMAX * KMAX. For cell-centered
I-ordered data (where IMAX is greater than one, and JMAX and KMAX are
equal to one), the number of stored values is (IMAX-1) - similarly for J-
ordered and K-ordered data.

Two-dimensional Ordered Data (IJ-ordered, JK-ordered, IK-ordered)

13



A two-dimensional array where two of the three dimensions (IMAX, JMAX,
KMAX) are greater than one, and the other dimension is equal to one. For
nodal data, the number of stored values is equal to IMAX * JMAX * KMAX.
For cell-centered IJ-ordered data (where IMAX and JMAX are greater than
one, and KMAX is equal to one), the number of stored values is (IMAX-
1)(JMAX-1) - similarly for JK-ordered and IK-ordered data.

Three-dimensional Ordered Data (IJK-ordered)

A three-dimensional array where all IMAX, JMAX and KMAX are each
greater than one. For nodal ordered data, the number of nodes is the
product of the I-, J-, and K-dimensions. For nodal data, the number of stored
values is equal to IMAX * JMAX * KMAX. For cell-centered data, the number
of stored values is (IMAX-1)(JMAX-1)(KMAX-1).

Finite Element Data
While finite element data is usually associated with numerical analysis for modeling complex
problems in 3D structures (heat transfer, fluid dynamics, and electromagnetics), it also provides an
effective approach for organizing data points in or around complex geometrical shapes. For example,
you may not have the same number of data points on different lines, there may be holes in the middle
of the dataset, or the data points may be irregularly (randomly) positioned. For such difficult cases, you
may be able to organize your data as a patchwork of elements. Each element can be independent of the
other elements, so you can group your elements to fit complex boundaries and leave voids within sets
of elements. The figure below shows how finite element data can be used to model a complex
boundary.

Figure 1. This figure shows finite element data used to model a complex boundary.

14



Finite element data defines a set of points (nodes) and the connected elements of these points. The
variables may be defined either at the nodes or at the cell (element) center. Finite element data can be
divided into three types:

Line data

This is a set of line segments defining a 2D or 3D line. Unlike I-ordered data, a single finite element
line zone may consist of multiple disconnected sections. The values of the variables at each data
point (node) are entered in the data file similarly to I-ordered data, where the nodes are numbered
with the I-index. This data is followed by another set of data defining connections between nodes.
This second section is often referred to as the connectivity list. All elements are lines consisting of
two nodes, specified in the connectivity list.

Surface data

This is a set of triangular, quadrilateral, or polygonal elements defining a 2D field or a 3D surface.
When using polygonal elements, the number of sides may vary from element to element. In finite
element surface data, you can choose (by zone) to arrange your data in three point (triangle), four
point (quadrilateral), or variable-point (polygonal) elements. The number of points per node and
their arrangement are determined by the element type of the zone. If a mixture of quadrilaterals
and triangles is necessary, you may repeat a node in the quadrilateral element type to create a
triangle, or you may use polygonal elements.


Remember that Tecplot Focus cannot load face-based (polygonal or polyhedral)
data.

Volume data

This is a set of tetrahedral, brick, or polyhedral elements defining a 3D volume field. When using
polyhedral elements, the number of sides may vary from element to element. Finite element
volume cells may contain four points (tetrahedron), eight points (brick), or variable points
(polyhedral).



For cell-based element types (triangular, quadrilateral, tetrahedral, or brick), you can
simulate zones with mixed element types by repeating nodes as necessary. For
example, a triangle element can be included in a quadrilateral zone by repeating one
node in the element’s connectivity list, and tetrahedral, pyramidal, and prismatic
elements can be included in a brick zone by repeating nodes appropriately.

Finite Element Data provides detailed information about how to format your FE data in Tecplot’s data
file format.

Line Data

Unlike I-ordered data, a single finite element line zone may consist of multiple disconnected sections.
The values of the variables at each data point (node) are entered in the data file similarly to I-ordered
data, where the nodes are numbered with the I-index. This data is followed by another set of data

15



defining connections between nodes. This second section is often referred to as the connectivity list. All
elements are lines consisting of two nodes, specified in the connectivity list.

Surface Data

In finite element surface data, you can choose (by zone) to arrange your data in three point (triangle),
four point (quadrilateral), or variable-point (polygonal) elements. The number of points per node and
their arrangement are determined by the element type of the zone. If a mixture of quadrilaterals and
triangles is necessary, you may repeat a node in the quadrilateral element type to create a triangle or
you may use polygonal elements.

 Remember that Tecplot Focus cannot load face-based (polygonal or polyhedral) data.

Volume Data

Finite element volume cells may contain four points (tetrahedron), eight points (brick) or a variable
number of points (polyhedral). The figures below shows the arrangement of the nodes for tetrahedral
and brick elements. The connectivity arrangement for polyhedral data is governed by the method in
which the polyhedral facemap data is supplied.

Figure 2. Tetrahedral connectivity arrangement

Figure 3. Brick connectivity arrangement

In the brick format, points may be repeated to achieve 4, 5, 6, or 7 point elements. For example, a
connectivity list of "n1 n1 n1 n1 n5 n6 n7 n8" (where n1 is repeated four times) results in a
quadrilateral-based pyramid element.

 Remember that Tecplot Focus cannot load face-based (polygonal or polyhedral) data.

16



Finite Element Data Limitations

Working with finite element data has some limitations:

• XY-plots of finite element data treat the data as I-ordered; that is, the connectivity list is ignored.
Only nodes are plotted, not elements, and the nodes are plotted in the order in which they appear
in the data file.

• Index skipping in vector and scatter plots treats finite element data as I-ordered; the connectivity
list is ignored. Nodes are skipped according to their order in the data file.

Variable Location
Data values can be stored at the nodes or at the cell centers.

• For finite element meshes, cell-centers are the centers (centroids) of elements.

• For many types of plots, cell-centered values are interpolated to the nodes internally.

Face Neighbors
For polygonal and polyhedral data, face neighbors are the fundamental means of defining the
topology.

A cell is considered a neighbor if one of its faces shares all nodes in common with the selected cell, or if
it is identified as a neighbor by face neighbor data in the dataset. The face numbers for cells in the
various zone types are defined below.

Figure 4. Example of node and face neighbors for an FE-brick cell or IJK-ordered cell.

17



Figure 5. Example of node and face numbering for an IJ-ordered/ FE-quadrilateral cell.

Figure 6. Example of tetrahedron face neighbors.

The implicit connections between elements in a zone may be overridden, or connections between cells
in adjacent zones established by specifying face neighbor criteria in the data file. Refer to TECFACE142
for additional information.

Working with Unorganized Data Sets
Tecplot 360 loads unorganized data as a single I-ordered zone and displays them in XY Mode, by
default. Tecplot products consider an I-ordered zone irregular if it has more than one dependent
variable. An I-ordered data set with one dependent variable (i.e. an XY or polar line) is NOT an
irregular zone.

To check for irregular data, you can go to the Data Set Info dialog (accessed via the Data menu). The
values assigned to: IMax, JMax, and KMax are displayed in the lower left quadrant of that dialog. If
IMax is greater than 1, and JMax and KMax are equal to 1, then your data is irregular.

It is also possible to tell if you have irregular data by looking at the plot. If you are looking at irregular
data with the Mesh layer turned on, the data points will be connected by lines in the order the points
appear in the data set.

You can organize your data set for Tecplot 360 in one of the following ways:

1. Manually order the data file using a text editor.

2. Use one of the Data→Interpolation options.

18



Example - Unorganized Three-Dimensional Volume

To use 3D volume irregular data in field plots, you must interpolate the data onto a regular, IJK-
ordered zone. To interpolate your data, perform the following steps:

1. Place your 3D volume irregular data into an I-ordered zone in a data file.

2. Read in your data file and create a 3D scatter plot.

3. From the Data menu, choose Create Zone>Rectangular. (Circular will also work.)

4. In the Create Rectangular Zone dialog, enter the I-, J-, and K-dimensions for the new zone; at a
minimum, you should enter 10 for each dimension. The higher the dimensions, the finer the
interpolation grid, but the longer the interpolating and plotting time.

5. Enter the minimum and maximum X, Y, and Z values for the new zone. The default values are the
minimums and maximums of the current (irregular) dataset.

6. Click [Create] to create the new zone, and [Close] to dismiss the dialog.

7. From the Data menu, choose Interpolate>Inverse Distance. (Linear or Kriging also works.)

8. In the Inverse-Distance Interpolation dialog, choose the irregular data zone as the source zone,
and the newly created IJK-ordered zone as the destination zone. Set any other parameters as
desired.

9. Select the [Compute] button to perform the interpolation.

Once the interpolation is complete, you can plot the new IJK-ordered zone as any other 3D volume
zone. You may plot iso-surfaces, volume streamtraces, and so forth. At this point, you may want to
deactivate or delete the original irregular zone so as not to conflict with plots of the new zone.

Figure 7 shows an example of irregular data interpolated into an IJK-ordered zone, with iso-surfaces
plotted on the resultant zone.

Figure 7. Irregular data interpolated into an IJK-ordered zone.

19



Time and Date Representation
Tecplot 360 uses floating point numbers to represent times and dates. The integer portion represents
the number of days since December 30, 1899. The decimal portion represents a fractional portion of a
day. The table below illustrates some examples of this method.

Date Time Floating Point Number

1900-01-01 00:00:00 2.0

1900-01-01 12:00:00 2.5

2008-07-31 00:00:00 39660.0

2008-07-31 12:00:00 39660.5

2008-07-31 12:01:00 39660.5006944444

2008-07-31 13:00:00 39660.5416666667

Tecplot 360 supports dates from 1800-01-01 through 9999-12-31. This formatting matches the
representation method used by Microsoft Excel, enabling you to load time/date data easily from Excel
into Tecplot 360. However, because Excel software’s original formatting incorrectly calculated 1900 as
a leap year, only dates from Mar 1, 1900 forward will import correctly into Tecplot 360.

Binary Data
This chapter is intended for experienced programmers who need to create Tecplot binary data files
directly. Support for topics discussed in this chapter is limited to general questions about writing
Tecplot binary files. It is beyond the scope of our Technical Support to offer programming advice or to
debug programs.

It is easy to write ASCII files in text format, and they have the advantage that you can inspect them
using a text editor to make sure they are being written correctly. Their primary disadvantages are that
they can consume much more disk space than binary files and are slower to load, which is especially
noticeable when they are large. While users can convert them to the binary format with the Preplot
utility (see Converting ASCII to Binary for additional information), it is much more efficient to simply
write them in binary format to begin with.

To output your data directly into Tecplot’s basic binary file format, .plt, you may use the TecIO library,
which is provided at no cost by Tecplot, Inc., or you may write your own binary functions. If you wish
to write your own functions, refer to Binary Data File Format for details on the structure of .plt files. If
you wish to link with the library provided by Tecplot, begin with Getting Started and use Binary Data
File Format only for reference.

If you wish to write files in the newer .szplt format, you must use the TecIO library, as this file format
is currently not documented.

20




You can find source files for most of the examples in this chapter in the
util/tecio/examples folder of your Tecplot 360 installation.

New TecIO Writing API

This chapter describes the "classic" TecIO binary file API. If you will be writing SZL (.szplt) files, you
may want to use the new API described in Writing SZL Data Files (New API). However, even if you use
the new API, you should still read this chapter for background if you are not already familiar with the
classic API.

Getting Started
TecIO is a library of utility functions that your application can use to create binary data files directly,
bypassing the use of ASCII files. This makes for fewer files to manage, conserves disk space, and saves
the time required to convert the files to binary (whether as a separate step or when loading them).

Tecplot products support two binary file formats:

Tecplot Binary (.plt)

The legacy format written by versions of Tecplot 360 and Tecplot Focus prior to Tecplot 360 EX. It is
of course also supported by Tecplot 360 EX and can be read by all versions of Tecplot 360, 360 EX,
and Focus.

Tecplot Subzone (.szplt)

A newer format introduced with Tecplot 360 EX, optimized for large data sets, that enables
substantially improved interactive performance and a reduced memory footprint for common
workflows. It can only be read by Tecplot 360 EX. Subzone data does not support Polyhedral data.

We encourage you to support both formats. Users of Tecplot 360 EX will appreciate the improved
interactive experience, while users of Tecplot Focus, legacy versions of Tecplot 360, and other
programs that read only Tecplot-format binary files will appreciate being able to consume your data
with the software they use every day.

Two versions of the TecIO library are available: a standard (single-process) library and a multiprocess
library that employs MPI (Message Passing Interface, a standardized, portable message-passing system
available on a variety of parallel computing architectures). The MPI version only writes subzone
(.szplt) files. Copies of both are installed with your Tecplot 360 installation. The path of the file varies
depending on the platform.

Platform Standard TecIO Multiprocess TecIO

Linux lib/libtecio.so lib/libteciompi.so

Mac tecio/libtecio.dylib tecio/libteciompi.dylib

Windows lib/tecio.dll lib/libteciompi.dll

21



You may also download the latest version of TecIO from the Tecplot Web site. (This may be a newer
version than the one described in this document.) Tecplot 360 and Focus both contain precompiled
versions of TecIO in their base installation. The download from the website only contains the source
files.

Before preparing to output your data in Tecplot’s binary format using the TecIO library, we recommend
you proceed as follows:

1. Review Data Structure for information on how zones and data are structured, Binary Data File
Function Calling Sequence and Writing to Multiple Binary Data Files.

2. Review the example files in the examples/tecio folder. The example programs demonstrate the use
of the TecIO utility functions and are provided in both FORTRAN and C/C++:

◦ simtest.f, simtest.f90, simtest.cpp - These files demonstrate simple use of the TecIO utility
functions.

◦ comtest.f, comtest.f90, comtest.cpp - These files demonstrate complex use of TecIO utility
functions, such as multiple file generation and transient data.

Numerous additional, more modern examples included in the TecIO package target specific actions,
like writing polyhedral data. Review these examples for additional guidance.

3. Follow the instructions in Linking with the TecIO Library for information on setting up your
project to develop with TecIO and linking with the library.

4. Begin developing your code.

Be sure to check out the examples located in your installation directory. A brief overview of the types
of examples are listed below.

Table 1. TecIO Examples and Descriptions

Example Description

Complex Example comtest, create multiple plt files containing multiple zones
(structured/unstructured/XY Line), also creates geometries and text.

FE (Unstructured) Face
Neighbors

faceneighbors, creates plt file of simple squares with face neighbor
information.

FE (Unstructured)
Partitioned

brickpartitioned, creates an Unstructured .szplt file with partitioned zones,
uses TecIO MPI, can be passed flags to output the partitioned zone in grid
and solution .szplt files.

Ordered ij_ordered, creates two, small, 2D, ordered zones with contour variable
information.

Ordered Partitioned ijkpartitioned, creates a .szplt file with an IJK ordered zone in 4 partitions,
uses TecIO MPI.

22

https://my.tecplot.com/portal/product-releases/tecio-library


Example Description

Read/Write Szplt rewriteszl, creates a utility that reads in a .szplt file and writes it out to
another .szplt file

Text text, creates a text box in a .plt file.

Viewing Your Output
You may load your binary files in Tecplot 360 or Tecplot Focus using the Tecplot Data loader or the
Tecplot Subzone Data Loader, as appropriate. Once loaded, you may view information about your data
file using any of the following techniques:

Data Set Information dialog

You may use the Data Set Information dialog (accessed via the Data menu) to display information
about your file (once it is loaded into Tecplot). Refer to this dialog for a list of the zones, variables,
variable ranges, auxiliary data and more. Refer to the User’s Manual for details.

Data Spreadsheet

Use the Data Spreadsheet to view a table of every variable value in your file. Refer to the User’s
Manual for details.

Partitioned Data
The TecIO library supports partitioning finite-element and ordered zones when writing .szplt data
files. That is, the data does not need to be written all at once, but can be written in sections, and by
more than one process. This capability is intended primarily for use with CFD codes that compute large
solutions in parallel, with multiple solver processes running on independent nodes in a compute
cluster, each solving a subset of the simulation. However, this capability can also be used by a single-
process solver running on a desktop workstation if desired.

TecIO writes the partitioned zones into a single Tecplot .szplt file that can later be opened and
visualized by Tecplot 360. To enable this functionality on large multiprocessing systems, TecIO utilizes
the Message-Passing Interface (MPI) library.

By comparison to non-partitioned zones, only a couple of additional TecIO function calls are required
when writing partitioned zones, and only a couple more beyond that when writing in parallel using
MPI . Two versions of the TecIO library are provided: tecio and teciompi. The latter requires a
compatible MPI library. (Note that non-MPI tecio does support writing partitioned zones, just not in
parallel.)

The teciompi library only writes SZL (.szplt) files; it does not write traditional Tecplot binary (.plt)
files.

Partitioned solution of large CFD cases typically requires that zone partitions overlap slightly. That is,
the nodes or cells on the each side of the boundary between partitions will reside in more than one

23

360-users-manual.pdf
360-users-manual.pdf
360-users-manual.pdf


solver process: in the one that "owns" it according to the partitioning rules, as well as in any processes
solving a partition spatially adjacent to it. In processes other than the one that "owns" them, such data
are commonly referred to as "ghost cells" and "ghost nodes."

The TecIO library needs information about these overlapping cells and nodes in order to later allow
the partitioned data to be joined into a single virtual data set suitable for visualization. For finite-
element zones, each solver process must pass a list of its ghost nodes and cells along with the zone data
(which should include the ghost nodes and cells). For ordered zones, the solver need pass only the
nodes that form non-ghost cells, which provides sufficient information for later reassembling the data.

The code sample brickpartitioned is useful for understanding how to write partitioned zones, and
includes the additional function calls needed for writing partitioned data in parallel using MPI. The
ijkpartitioned code sample shows this for an IJK-ordered zone, and also demonstrates outputting non-
partitioned zones from various MPI ranks.

Binary File Compatibility
A .plt file is compatible with the version of Tecplot 360 EX or Focus tied to the version of the TecIO
library that you use and later versions. For example, if you use the TecIO library that was bundled with
Tecplot 360 EX 2014 R2, your files can be loaded with Tecplot 360 EX 2014 R2 and newer. A .plt file is
also backward compatible to the first version of Tecplot 360 (pre-EX) or Focus that uses the file format
version supported by the library being used.

This rule is independent of the version number used for the binary functions (for example, the 142 in
TECINI). Even if you use 142 functions with the version of the TecIO library included with this
distribution, your .plt file will be compatible with this version of Tecplot 360 EX and newer.

However, older Tecplot products cannot read .szplt files regardless of their version. Subzone data files
(SZL or .szplt) can be loaded only in Tecplot 360 EX, not Tecplot 360 (pre-EX) or Tecplot Focus.

The SZL file format was introduced in Tecplot 360 EX 2014 R1 and was revised in Tecplot 360 EX 2016
R1 to support partitioned output. Similar to the situation with the .plt format, newer versions of
Tecplot 360 EX can read the format generated with the older TecIO library, but older versions of
Tecplot 360 EX may not always be able to read the files generated by the newer versions of TecIO.

Files containing face-based (polygonal or polyhedral) finite-element zones cannot be read by Tecplot
Focus. Tecplot Focus 2016 R1 and later can read files containing a maximum of five million data points.

However, the TecIO shipped with Tecplot EX 2014 R2 and later will produce files compatible with older
versions dating back to 2009 as long as the file does not contain polyhedral or polygonal zones with
more than 2 billion face nodes.

Deprecated Binary Functions

Functions whose names end in an integer less than 142 are deprecated and are provided only for
compatibility with older client code. We recommend you use the 142 binary function family with new

24



code and/or if you need to update your application to take advantage of the new functionality provided
with version 142. In order to use the 142 family of functions, use the TecIO library included in your
Tecplot 360 EX 2025 distribution. If you have existing code using deprecated functions, and want to use
any binary function calls from version 142, you must update all your TecIO library calls to 142.

API version 142 or later allows applications to select between the .plt and .szplt file formats at
runtime, a feature introduced with Tecplot 360 2014 R2. In Tecplot 360 2014 R1, two versions of the
TecIO library were provided, one that wrote .plt files and one that wrote .szplt files. Both had
identical APIs; the file format was determined solely by the version of the library you linked with your
application. In Tecplot 360 2014 R2 and later, a parameter was added to TECINI to choose the format
when opening the file for writing (see TECINI142. The current TecIO library always writes .plt files
when using an API version below 142, since there is no way to specify the file format with these older
APIs.

Character Strings in FORTRAN

All character string parameters passed to TecIO must use C-style strings: that is, they must terminate
with a null character. In FORTRAN, this can be done by concatenating char(0) to the end of a character
string.

For example, to send the character string "Hi Mom" to a function called A, use the following syntax:

I=A("Hi Mom"//char(0))

Boolean Flags

Integer parameters identified as "flags" indicate boolean values. Pass 1 for true, and 0 for false.

Binary Data File Function Calling Sequence
The binary data file functions in the TecIO library must be called in a specific order, which varies
slightly depending on the type of zone being written and whether you are using the serial version
(tecio) or parallel version (teciompi) of the library. Remember, you may write both partitioned and
non-partitioned zones with either version of the TecIO library; the MPI version is required only if you
want to write files in parallel.

Even if your code generally supports writing partitioned zones, single-partition zones are considered
non-partitioned by TecIO, and you should use the non-partitioned zone calling sequence.

A program may, if desired, write both ordinary and partitioned data to up to ten files simultaneously.
Writing to Multiple Binary Data Files explains how to use the TECFIL142 function to write to multiple
files simultaneously.

25



Additional Requirement for Parallel Output

For parallel programs using TecIO-MPI, additional routines must be called and some restrictions must
be observed:

• The routine TECMPIINIT142 must be called after each call to TECINI142. TECMPIINIT142 identifies an
MPI communicator that includes all MPI ranks (processes) involved in outputting the file, and
designates one rank within the communicator group as the main rank. It must be called by all
members of the communicator. If more than one file is being output-TECINI142 is called more than
once-each file output may use a different communicator and a different main rank within that
communicator.

• Meta-data and other non-zone items may be output from only the main rank for a file. Thus, the
routines TECAUXSTR142, TECVAUXSTR142, TECZAUXSTR142, TECLAB142, TECGEO142, and TECTXT142 can be
called only from the main rank. TECUSR142 has no effect because TecIO-MPI outputs only .szplt files,
and user data is not included in the .szplt file format.

• For each zone output, TECZNE142 or TECZNEFEMIXED142 must be called by the main rank and all ranks
outputting that zone. It is optional for uninvolved ranks to also call TECZNE142 or TECZNEFEMIXED142; it
becomes a no-op for these ranks.

• TECZNEMAP142 must be called immediately after the call to TECZNE142 or TECZNEFEMIXED142 (including
any uninvolved ranks that still called TECZNE142 or TECZNEFEMIXED142). For partitioned zones,
TECZNEMAP142 indicates how many partitions will be output for the zone, and identifies the MPI rank
that will output each partition. For non-partitioned zones, TECZNEMAP142 is called as if the zone had a
single partition. This gives a mechanism for your program to designate, for each non-partitioned
zone, which rank will output that zone.

Non-partitioned Zones

When writing non-partitioned zones to a file, calls should be made to TecIO in this order:

• TECINI142, then TECMPIINIT142 if using TecIO-MPI

• For each call to TECINI142, use one or more of the following:

◦ TECAUXSTR142 (Optional, main rank only if using TecIO-MPI)

◦ TECVAUXSTR142 Optional, main rank only if using TecIO-MPI)

◦ TECZNE142 or TECPOLYZNE142 or TECZNEFEMIXED142 then TECZNEMAP142 if using TecIO-MPI

◦ Then, for each call to TECZNE142 or TECPOLYZNE142 or TECZNEFEMIXED142, use one or more of these:

▪ TECDAT142 (One or more to fill each zone)

▪ TECNOD142 or TECNODE142 (One or more for each finite element zone)

▪ TECFACE142 (One for each zone with face connections)

▪ TECPOLYFACE142 and TECPOLYBCONN142 (polyhedral data; not available for TecIO-MPI)

▪ TECZAUXSTR142 (Optional, main rank only if using TecIO-MPI)

26



◦ TECLAB142 (Optional, main rank only if using TecIO-MPI)

◦ TECGEO142 (Optional, main rank only if using TecIO-MPI)

◦ TECTXT142 (Optional, main rank only if using TecIO-MPI)

◦ TECUSR142 (Optional, main rank only if using TecIO-MPI)

• TECEND142

 Remember that Tecplot Focus cannot load face-based (polygonal or polyhedral) data.

Partitioned Zones

Currently, only classic volume finite-element zones and IJK-ordered zones can be written in partitioned
fashion. Other zone types are planned for future development.

The calling sequence for writing partitioned zones is as follows:

• TECINI142, then TECMPIINIT142 if using TecIO-MPI

• TECAUXSTR142 (main rank only)

• TECVAUXSTR142 (main rank only)

• Then for each partition or zone to be written by the process, use one or more of the following:

◦ TECZNE142 or TECZNEFEMIXED142, then TECZNEMAP142 (if using TecIO-MPI) followed by either
TECFEPTN142, TECIJKPTN142, or TECFEMIXEDPTN142,depending on whether the zone is FE single-
section, ordered, or FE multi-section.

▪ Then call one or more of the following:

▪ TECDAT142 (One or more calls to fill each zone)

▪ TECNOD142 or TECNODE142 (One or more calls for each finite element zone)

▪ TECFACE142 (One call for each zone with face connections)

▪ TECZAUXSTR142 (main process only)

◦ TECLAB142 (main rank only)

◦ TECGEO142 (main rank only)

◦ TECTXT142 (main rank only)

◦ TECUSR142 (main rank only)

• TECEND142

Writing to Multiple Binary Data Files
Each time TECINI142 is called, it sets up a new file context. For each file context, you must maintain the
order of the calls as described earlier. The TECFIL142 function is used to switch between file contexts.
Up to 10 files can be written to at a time. TECFIL142 can be called almost anywhere after TECINI142 has

27



been called. The only parameter to TECFIL142, an integer, n, shifts the file context to the nth open file.
The files are numbered relative to the order of the calls to TECINI142.

Note that when writing a subzone (.szplt) file, all data written is held in memory and not actually
committed to disk until TECEND142 is called, because the order of data stored in a subzone file is usually
not the same as the order in which it was provided by the application. Ordinary binary files (.plt) files
may be partially written to disk before TECEND142 is called.

Linking with the TecIO Library
Follow the instructions below to link with the TecIO library. The library is provided as a dynamic
library on all platforms, meaning that it remains a separate file and must be distributed with your
application. If you wish instead to use a static library that will be combined into your application, you
may obtain the TecIO or TecIO-MPI source code from my.tecplot.com/portal/product-releases/tecio-
library. For TecIO-MPI on Mac or Linux platforms, you should strongly consider building the library
from source on your solver machine, since various MPI versions are not binary-compatible.

Linux/Macintosh

To link with the TecIO library, pass the full path to the tecio (or teciompi) library to your compiler or
linker along with all other input files needed to compile and link your application. The TecIO library is
written in C++, so in addition to linking it, you will likely also need to link in the C++ standard library.

For example, to create an output file my-executable from a C source file of my-prog.c and link in the
TecIO library and the C++ standard library:

cc -o my-executable my-prog.c /path/to/libtecio.so -lstdc++ (Linux)
cc -o my-executable my-prog.c /path/to/libtecio.dylib -lstdc++  (Mac)

For TecIO-MPI, instead use /path/to/libteciompi.so or /path/to/libteciompi.dylib depending on
platform.

The stdc++ library used to build the tecio library in your Tecplot 360 installation may be newer than
the one provided on your platform. If so, link against the version of the stdc++ library provided in your
Tecplot 360 installation. See the file util/tecio/examples/base.make inside your Tecplot 360 installation
directory for an example of this.

Include the TecIO header file TECIO.h in your source files. It may be found in the include directory of
your Tecplot 360 installation.


Fortran programmers: some Fortran 90 compilers do not recognize the .f90 filename
extension.

28

https://my.tecplot.com/portal/product-releases/tecio-library
https://my.tecplot.com/portal/product-releases/tecio-library


Windows

To link with the TecIO library, list tecio.dll (or, for TecIO-MPI, teciompi.dll) as an additional
dependency in your Visual Studio project. Include the TecIO header file TECIO.h in your source files. It
may be found in the include directory of your Tecplot 360 installation.

To ensure Windows finds tecio.dll when launching your executable, ensure its location is in your PATH
environment variable, or else copy it to your executable’s directory. The latter approach is generally
best, as it ensures that the correct version will be used if multiple copies of the library are installed on
the machine.

Notes for Windows Programmers using Fortran

Files tecio.f90 and tecio.for, located in the include folder in your installation, contain both Fortran-90
interfaces for all TecIO routines and several compiler-specific directives (the !MS$ATTRIBUTES lines).
These direct Microsoft Visual Fortran to use STDCALL calling conventions with by-reference parameter
passing. While tecio.f90 is free-formatted, tecio.for uses the traditional column-based formatting.
Include the appropriate file in any of your subroutines that call TecIO routines. Both files were
developed for Intel Visual Fortran 9.

Users of other compilers may need to adjust the Fortran settings or add other compiler directives to
achieve the same effect. In particular, Fortran strings must be null-terminated and passed without a
length argument.

Binary Data File Function Reference
This section describes each of the TecIO functions in detail.

TECAUXSTR142

Writes auxiliary data for the data set to the data file. The function may be called at any time between
TECINI142 and TECEND142. Auxiliary data may be used by text, macros, equations (if it is numeric) and
add-ons. It may be viewed directly in the Aux Data page of the Data Set Information dialog (accessed
via the Data menu).

When using TecIO-MPI, may only be called from the main process.

FORTRAN Syntax:

 INTEGER*4 FUNCTION TECAUXSTR142(Name,
&                                Value)
 CHARACTER*(*) Name
 CHARACTER*(*) Value

29



C Syntax:

#include TECIO.h
INTEGER4 TECAUXSTR142(char *Name,
                      char *Value);

Return Value

0 if successful, -1 if unsuccessful.

Parameters

Parameter Description

Name The name of the auxiliary data. If this duplicates an existing name, the value will
overwrite the existing value. It must be a null-terminated character string and
cannot contain spaces.

Value The value to assign to the named auxiliary data. It must be a null-terminated
character string.

Example

For example, to set an Auxiliary Variable called DeformationValue to 0.98:

char DeformationValue[128];
strcpy(DeformationValue,"0.98");

TECAUXSTR142("DeformationValue",
             DeformationValue);

When the data file is loaded into Tecplot, "Deformation Value" will appear on the Aux Page of the Data
Set Information dialog when "for Data Set" is selected in Show Auxiliary Data menu.

TECDAT142

Writes an array of data to the data file. Data should not be passed for variables that have been
indicated as passive or shared (via TECZNE142 or TECPOLYZNE142 or TECZNEFEMIXED142).

TECDAT142 allows you to write your data in piecemeal fashion in case it is not contained in one
contiguous block in your program or is not available all at once. TECDAT142 must be called enough times
to ensure that the correct number of values is written for each zone and that the aggregate order for
the data is correct.

30



FORTRAN Syntax:

 INTEGER*4 FUNCTION TECDAT142(N,
&                             Data,
&                             IsDouble)
 INTEGER*4                    N
 REAL or DOUBLE PRECISION     Data(1)
 INTEGER*4                    IsDouble

C Syntax:

#include TECIO.h
INTEGER4 TECDAT142(INTEGER4  *N,
                   void  *Data,
                   INTEGER4  *IsDouble);

Return Value

0 if successful, -1 if unsuccessful.

Parameters

Parameter Description

N Pointer to an integer value specifying number of values to write.

Data Array of single or double precision data values. Refer to Table 2 for a description of
how to arrange your data.

IsDouble Pointer to the integer flag stating whether the array Data is single (0) or double (1)
precision.

Data Arrangement

The following table describes the order the data must be supplied given different zone types.
VarLocation is a parameter supplied to TECZNE142 or TECPOLYZNE142 or TECZNEFEMIXED142.

Table 2. Data Arrangement

31



Zone Type Var. Location Number of
Values

Order

Ordered Nodal IMax*
JMax*
KMax*
NumVars

I varies fastest, then J, then K, then Vars. That
is, the numbers should be supplied in the
following order:

for (Var=1;Var<=NumVars;Var++)
  for (K=1;K<=KMax;K++)
    for (J=1;J<=JMax;J++)
      for (I=1;I<=IMax;I++)
        Data[I, J, K, Var] = value;

Ordered Cell Centered (IMax-1)*
(JMax-1)*
(KMax-1)*
NumVars

I varies fastest, then J, then K, then Vars. That
is, the numbers should be supplied in the
following order:

for (Var=1;Var<=NumVars;Var++)
  for (K=1;K<=(KMax-1);K++)
    for (J=1;J<=(JMax-1);J++)
      for (I=1;I<=(IMax-1);I++)
        Data[I, J, K, Var] = value;

Finite element Nodal IMax (i.e.
NumNodes) *
NumVars

N varies fastest, then Vars. That is, the
numbers should be supplied in the following
order:

for (Var=1;Var<=NumVars;Var++)
  for (N=1;N<=NumNodes;N++)
    Data[N, Var] = value;

Finite element Cell Centered JMax (i.e.
NumElements
) * NumVars

E varies fastest, then Var. That is, the numbers
should be supplied in the following order:

for (Var=1;Var<=NumVars;Var++)
  for (E=1;E<=NumElements;E++)
    Data[E, Var] = value;

Refer to Examples for examples using TECDAT142:

• Face Neighbors

• Polygonal Example

• Multiple Polyhedral Zones

32



• Multiple Polygonal Zones

• Polyhedral Example

• IJ-ordered zone

TECEND142

Must be called to close the current data file. There must be one call to TECEND142 for each TECINI142 or
data may be lost. (When writing .szplt files, all data are held in memory until TECEND142 is called.)

When writing partitioned data, this call will block until all processes involved in writing the data have
called it.

FORTRAN Syntax:

INTEGER*4 FUNCTION TECEND142()

C Syntax:

#include TECIO.h
INTEGER4 TECEND142();

Return Value

0 if successful, -1 if unsuccessful.

Parameters

None.

TECFACE142

Writes face connections for the current zone to the file. Face Neighbor Connections are used for
ordered or cell-based finite element zones to specify connections that are not explicitly defined by the
connectivity list or ordered zone structure. You many use face neighbors to specify connections
between zones (global connections) or connections within zones (local connections). Face neighbor
connections are used by Tecplot when deriving variables or drawing contour lines. Specifying face
neighbors typically leads to smoother connections. NOTE: face neighbors have expensive performance
implications. Use face neighbors only to manually specify connections that are not defined via the
connectivity list.

 Remember that Tecplot Focus cannot load face-based (polygonal or polyhedral) data.

This function must be called after TECNOD142 or TECNODE142, and may only be called if a non-zero value
of NumFaceConnections was used in the previous call to TECZNE142 or TECZNEFEMIXED142.

33



FORTRAN Syntax:

INTEGER*4 FUNCTION TECFACE142(FaceConnections)
INTEGER*4 FACECONNECTIONS(*)

C Syntax:

#include TECIO.h
INTEGER4 TECFACE142(INTEGER4 *FaceConnections);

Return Value

0 if successful, -1 if unsuccessful.

Parameters

Parameter Description

FaceConnection
s

The array that specifies the face connections. The array must have L values, where L
is the sum of the number of values for each face neighbor connection in the data file.
The number of values in a face neighbor connection is dependent upon the
FaceNeighborMode parameter (set via TECZNE142 or TECZNEFEMIXED142) and is described
in the following table.

FaceNeighbor Mode Number of values Data

LocalOneToOne 3 cz1,fz,cz2

LocalOneToMany nz+4 cz1,fz,oz,nz,cz2,cz3,…,czn

GlobalOneToOne 4 cz, fz, ZZ, CZ

GlobalOneToMany 2*nz+4 cz, fz, oz, nz, ZZ1, CZ1, ZZ2, CZ2,
…,ZZn, CZn

Where:

cz = cell in current zone

fz = face of cell in current zone

oz = face obscuration flag (only applies to one-to-many, 0 = face partially obscured, 1 = face entirely
obscured)

nz = number of cell or zone/cell associations (only applies to one-to-many)

ZZ = remote Zone

CZ = cell in remote zone

34



cz,fz combinations must be unique. Additionally, Tecplot 360 assumes that with the one-to-one face
neighbor modes a supplied cell face is entirely obscured by its neighbor. With one-to-many, the
obscuration flag must be supplied. Faces that are not supplied with neighbors are run through Tecplot
360’s auto face neighbor generator (FE only).

The face numbers for cells in the various zone types are shown below:

Figure 8. Example of node and face neighbors for an FE-brick cell or IJK-ordered cell.

Figure 9. Example of node and face numbering for an IJ-ordered/ FE-quadrilateral cell.

Figure 10. Example of tetrahedron face neighbors.

Example

Refer to Face Neighbors for an example of working with face neighbors. In this example, face
neighbors are used to prevent an Edge line from being drawn between the two zones.

35



TECFEMIXEDPTN142

When writing a partitioned FE-mixed element zone to a .szplt file, TECFEMIXEDPTN142 provides
information about the partition about to be written. Must be called after TECZNEFEMIXED142 (and, for
TecIO-MPI, TECZNEMAP142) but before calling TECDAT142 and TECNOD142/ TECNODE142 to actually write the
data. Should not be called for non-partitioned zones (or equivalently, zones that have only one
partition).

A partition may include nodes and cells that overlap other partitions, commonly referred to as "ghost
nodes" and "ghost cells." The TECZNEFEMIXED142 function call specifies this ghost data, allowing the
partitions to be later reassembled seamlessly into a single zone when loaded for visualization. Each
node or cell should be considered to be "owned" by one process, and that process should not report
that node or cell as a "ghost." Any other process that has that node or cell in its partition should include
it in the list of ghost nodes or cells, respectively, passed to TECZNEFEMIXED142. The array containing the
number of cells per section and the number of ghost cells per section must be dimensioned by the
number of sections for the zone. All partitions of the zone must deliver both arrays dimensioned by the
number of sections for the zone. If a partition does not have cells in a given section it must set the
number of cells for that section to zero. The ghostCells array is a flat array containing the ghost cells
for each section, back to back, interpreted by looking at the counts in the numGhostCellsPerSection
array.

All partitions must include data for the actual "ghost" nodes and cells using the appropriate function
calls (e.g. TECDAT142, TECNOD142/ TECNODE142).

FORTRAN Syntax:

 INTEGER*4 FUNCTION TECFEMIXEDPTN142(partition
&                                    numNodes,
&                                    numCellsPerSection,
&                                    numGhostNodes,
&                                    ghostNodes,
&                                    neighborPartitions,
&                                    neighborPartitionNodes,
&                                    numGhostCellsPerSection,
&                                    ghostCells)
 INTEGER*4 partition
 INTEGER*8 numNodes
 INTEGER*8 numCellsPerSection
 INTEGER*8 numGhostNodes
 INTEGER*4 ghostNodes
 INTEGER*4 neighborPartitions
 INTEGER*4 neighborPartitionNodes
 INTEGER*8 numGhostCellsPerSection
 INTEGER*4 ghostCells

36



C Syntax:

#include "TECIO.h"
INTEGER4 TECFEMIXEDPTN142(INTEGER4 const* partition,
                          INTEGER8 const* numNodes,
                          INTEGER8 const* numCellsPerSection,
                          INTEGER8 const* numGhostNodes,
                          INTEGER4 const* ghostNodes,
                          INTEGER4 const* neighborPartitions,
                          INTEGER4 const* neighborPartitionNodes,
                          INTEGER8 const* numGhostCellsPerSection,
                          INTEGER4 const* ghostCells)

Return Value

0 if successful, -1 if unsuccessful.

Parameters

Parameter Description

partition The number of the current partition. Partitions are numbered from 1 to the number
of partitions (as specified in the TECZNEMAP142 call) inclusive.

numNodes The number of nodes in the partition, including any ghost nodes.

numCellsPerSec
tion

The number of cells in each section of the partition, including any ghost cells. The
array must be dimensioned by the number of sections in the zone and is the same
dimension for all partitions. If a partition does not have any cells in a given section a
value of zero should be set for that section.

numGhostNode
s

The number of ghost nodes in the partition.

ghostNodes Array of length numGhostNodes specifying the indices of the ghost nodes. Each ghost
node must be specified exactly once.

neighborPartiti
ons

Array of length numGhostNodes specifying the owning partition of each ghost node,
in the order in which they are specified in ghostNodes.

neighborPartiti
onNodes

Array of length ngnodes specifying the node index by which each ghost node is
known in its owning partition, again in the order specified in ghostNodes.

numGhostCells
PerSection

The number of ghost cells in each section of the partition. The array must be
dimensioned by the number of sections in the zone and is the same dimension for all
partitions. If a partition does not have any ghost cells in a given section a value of
zero should be set for that section.

37



Parameter Description

ghostCells Flat array of a length that is the sum of the members of the
numGhostCellsPerSection array containing the ghost cells for each section of the
partition listed back to back.

TECFEPTN142

When writing a partitioned classic finite-element zone to a .szplt file, provides information about the
partition about to be written. Must be called after TECZNE142 or TECZNEMAP142(and, for TecIO-MPI,
TECZNEMAP142) but before calling TECDAT142 and TECNOD142/TECNODE142 to actually write the data. Should
not be called for non-partitioned zones (or equivalently, zones that have only one partition).

A partition may include nodes and cells that overlap other partitions, commonly referred to as "ghost
nodes" and "ghost cells." The TECFEPTN142 function call specifies this ghost data, allowing the partitions
to be later reassembled seamlessly into a single zone when loaded for visualization. Each node or cell
should be considered to be "owned" by one process, and that process should not report that node or
cell as a "ghost." Any other process that has that node or cell in its partition should include it in the list
of ghost nodes or cells, respectively, passed to TECFEPTN142.

All partitions must include data for the actual "ghost" nodes and cells using the appropriate function
calls (e.g. TECDAT142, TECNOD142/TECNODE142).

FORTRAN Syntax:

 INTEGER*4 FUNCTION TECFEPTN142( partition,
&                               numnodes,
&                               numcells,
&                               ngnodes,
&                               gnodes,
&                               gnpartitions,
&                               gnpnodes,
&                               ngcells,
&                               gcells)
INTEGER*4  partition
INTEGER*4  numnodes
INTEGER*4  numcells
INTEGER*4  ngnodes
INTEGER*4  gnodes
INTEGER*4  gnpartitions
INTEGER*4  gnpnodes
INTEGER*4  ngcells
INTEGER*4  gcells

38



C Syntax:

#include TECIO.h
INTEGER4 TECFEPTN142(INTEGER4 *partition,
                     INTEGER4 *numnodes,
                     INTEGER4 *numcells,
                     INTEGER4 *ngnodes,
                     INTEGER4 *gnodes,
                     INTEGER4 *gnpartitions,
                     INTEGER4 *gnpnodes,
                     INTEGER4 *ngcells,
                     INTEGER4 *gcells);

Return Value

0 if successful, nonzero if unsuccessful.

Parameters

Parameter Description

partition The number of the current partition. Partitions are numbered from 1 to the number
of partitions (as specified in the TECZNEMAP142 call) inclusive.

numnodes The number of nodes in the partition, including any ghost nodes.

numcells The number of cells in the partition, including any ghost cells.

ngnodes The number of ghost nodes in the partition.

gnodes Array of length ngnodes specifying the indices of the ghost nodes. Each ghost node
must be specified exactly once.

gnpartitions Array of length ngnodes specifying the owning partition of each ghost node, in the
order in which they are specified in gnodes.

gnpnodes Array of length ngnodes specifying the node index by which each ghost node is
known in its owning partition, again in the order specified in gnodes.

ngcells Number of ghost cells.

gcells Array of length ngcells specifying the indices of the ghost cells. Each ghost cell must
be specified exactly once.

TECFIL142

Switch output context to a different file. Each time TECINI142 is called, a new file context is created. This
allows you to write multiple data files concurrently. When working with multiple files, be sure to call
TECFIL142 each time you wish to write to a file to ensure your data is written to the expected file.

39



FORTRAN Syntax:

`INTEGER*4 FUNCTION TECFIL142(F)
 INTEGER*4    F

C Syntax:

#include TECIO.h
INTEGER4 TECFIL142(INTEGER4 *F);

Return Value

0 if successful, -1 if unsuccessful.

Parameters

Parameter Description

F Pointer to integer specifying file number to switch to. A value of 1 indicates a switch
to the file opened by the first call to TECINI142.

Examples

Refer to Switching Between Two Files for a simple example of working with TECFIL142.

TECFLUSH142

Optional, implemented for SZL file output only. May be called at any point where the current zone data
and connectivity (if any) are complete. This call will append current data to six temporary files
(creating the files if they do not already exist), and release associated Tecio memory. The names of
these files are the filename supplied to TECINI142, appended with each of six file suffixes: .szhdr, .szdat,
.szaux, .sztxt, .szgeo and .szlab. These six files, along with any data not yet flushed to disk, will be
assembled into the final .szplt file when TECEND142 is called.

If using TecIO-MPI, this is a collective function - it must be called by all processes in the communicator
that was supplied in the call to TECMPIINIT142, and will block until all processes have called it.

This routine is useful for unsteady solvers that write multiple time steps of data to disk and wish to
write them all to a single .szplt file. It prevents Tecio from caching all of those time steps in memory,
which might exhaust all available memory on the solver machine. It is an alternative to grid/solution
files, and should not be used when writing grid/solution files because it adds unnecessary processing
overhead for no benefit.

At any time after the first call to TECFLUSH142, the temporary files may be assembled manually using
shell utility szcombine. Please see the documentation for SZCOMBINE for more information.

40



The data can be left in the temporary files, and even appended to in subsequent solver runs, by not
calling TECEND142 at the end of the solver run. To append to existing temporary files in a new solver
run, pass the same file name to TECINI142 as was used to create the temporary files in the first solver
run. Note that the time steps of the new solver run will not be able to share variables or connectivity
with any time steps from previous solver runs.

FORTRAN Syntax:

 INTEGER*4 TECFLUSH142(NumZonesToRetain,
&                      ZonesToRetain)
 INTEGER*4 NumZonesToRetain
 INTEGER*4 ZonesToRetain(*)

C Syntax:

INTEGER4 TECFLUSH142(INTEGER4 const* NumZonesToRetain,
                     INTEGER4 const* ZonesToRetain);

Return value:

0 if successful, -1 otherwise.

Parameters

Parameters Description

NumZonesToRe
tain

The number of zones to retain in Tecio memory for sharing from subsequent zones.

ZonesToRetain The list of zones to retain in Tecio memory. These zones will be written to the
temporary files, but will also be retained in memory so that they are available for
variable or connectivity sharing by zones to be output later. These are the only zone
numbers that may be referenced by the parameters ShareVarFromZone or
ShareConnectivityFromZone in subsequent calls to TECZNE142 or TECZNEFEMIXED142.

TECFOREIGN142

Optional function that sets the byte ordering request for subsequent calls to TECINI142. The byte
ordering request will remain in effect until the next call to this function. This has no effect on any files
already opened via TECINI142. Use this function to reverse the byte ordering from the format native to
your operating system. This function is not much needed today, since current Tecplot products are
supported only on Intel-based platforms; however, it may be useful with older versions of TecIO
running on legacy UNIX platforms that have non-Intel byte orders.

If the function call is omitted, native byte ordering is used.

41



FORTRAN Syntax:

 INTEGER*4 FUNCTION TECFOREIGN142(DoForeignByteOrder)
 INTEGER*4                        DoForeignByteOrder

C Syntax:

#include TECIO.h
INTEGER4 TECFOREIGN142(INTEGER4 *DoForeignByteOrder);

Return Value

0 if successful, -1 if unsuccessful.

Parameters

Parameter Description

DoForeignByte
Order

Pointer to boolean value indicating if future files created by TECINI142 should be
written out in foreign byte order. 0 indicates native byte order. 1 indicates foreign
byte order.#

TECGEO142

Adds a geometry object to the file (e.g. a circle or a square). You cannot set unused parameters to NULL;
use dummy values for unused parameters.

When using TecIO-MPI, may only be called from the main process.

FORTRAN Syntax:

 INTEGER*4 FUNCTION TECGEO142(XOrThetaPos,
&                             YOrRPos,
&                             ZPos,
&                             PosCoordMode,
&                             AttachToZone,
&                             Zone,
&                             Color,
&                             FillColor,
&                             IsFilled,
&                             GeomType,
&                             LinePattern,
&                             PatternLength,
&                             LineThicknessness,
&                             NumEllipsePts,

42



&                             ArrowheadStyle,
&                             ArrowheadAttachment,
&                             ArrowheadSize,
&                             ArrowheadAngle,
&                             Scope,
&                             Clipping,
&                             NumSegments,
&                             NumSegPts,
&                             XOrThetaGeomData,
&                             YOrRGeomData,
&                             ZGeomData,
&                             MFC)
DOUBLE PRECISION              XOrThetaPos
DOUBLE PRECISION              YOrRPos
DOUBLE PRECISION              ZPos
INTEGER*4                     PosCoordMode
INTEGER*4                     AttachToZone
INTEGER*4                     Zone
INTEGER*4                     Color
INTEGER*4                     FillColor
INTEGER*4                     IsFilled
INTEGER*4                     GeomType
INTEGER*4                     LinePattern
DOUBLE PRECISION              PatternLength
DOUBLE PRECISION              LineThicknessness
INTEGER*4                     NumEllipsePts
INTEGER*4                     ArrowheadStyle
INTEGER*4                     ArrowheadAttachment
DOUBLE PRECISION              ArrowheadSize
DOUBLE PRECISION              ArrowheadAngle
INTEGER*4                     Scope
INTEGER*4                     Clipping
INTEGER*4                     NumSegments
INTEGER*4                     NumSegPts
REAL*4                        XOrThetaGeomData
REAL*4                        YOrRGeomData
REAL*4                        ZGeomData
CHARACTER*(*)                 MFC

C Syntax:

#include TECIO.h
INTEGER4 TECGEO142(double *XOrThetaPos,
                   double  *YOrRPos,
                   double  *ZPos,
                   INTEGER4 *PosCoordMode,

43



                   INTEGER4 *AttachToZone,
                   INTEGER4 *Zone,
                   INTEGER4 *Color,
                   INTEGER4 *FillColor,
                   INTEGER4 *IsFilled,
                   INTEGER4 *GeomType,
                   INTEGER4 *LinePattern,
                   double  *PatternLength,
                   double    *LineThicknessness,
                   INTEGER4 *NumEllipsePts,
                   INTEGER4 *ArrowheadStyle,
                   INTEGER4 *ArrowheadAttachment,
                   double  *ArrowheadSize,
                   double  *ArrowheadAngle,
                   INTEGER4 *Scope,
                   INTEGER4 *Clipping,
                   INTEGER4 *NumSegments,
                   INTEGER4 *NumSegPts,
                   float  *XOrThetaGeomData,
                   float  *YOrRGeomData,
                   float  *ZGeomData,
                   char  *MFC)

Return Value

0 if successful, -1 if unsuccessful.

Parameters

Parameter Description

XPos or
ThetaPos

Pointer to double value specifying the X- position or, for polar line plots, the Theta-
position of the geometry.

YPos or RPos Pointer to double value specifying the Y-position or, for polar line plots, the R-
position of the geometry.

ZPos Pointer to double value specifying the Z-position of the geometry.

PosCoordMode Pointer to integer value specifying the position coordinate system.

0=Grid 1=Frame 6=Grid3D

Grid3D is available only when the GeomType is equal to 3D Line Segments.

AttachToZone Pointer to integer flag to signal that the geometry is "attached" to a zone. When a
geometry is attached to a zone, it will be visible only when that zone is visible.

1 = Yes 0 = No

44



Parameter Description

Zone Pointer to integer value specifying the number of the zone to attach to. Must be
greater than or equal to one.

Color Pointer to integer value specifying the color to assign to the geometry.

0=Black
1=Red
2=Green
3=Blue
4=Cyan
5=Yellow
6=Purple
7=White

8=Custom1
9=Custom2
10=Custom3
11=Custom4
12=Custom5
13=Custom6
14=Custom7
15=Custom8

FillColor Pointer to integer value specifying the color used to fill the geometry. Refer to Color
for a list of available values.

IsFilled Pointer to integer flag to specify if geometry is to be filled.

1 = Yes 0 = No

GeomType Pointer to integer value specifying the geometry type.

0=2D Line Segments
1=Rectangle
2=Square

3=Circle
4=Ellipse
5=3D Line Segments

LinePattern Pointer to integer value specifying the line pattern.

0=Solid
1=Dashed
2=DashDot

3=Dotted
4=LongDash
5=DashDotDot

PatternLength Pointer to double value specifying the pattern length in frame units (from 0.01 and
less than 100).

LineThicknessn
ess

Pointer to double value specifying the line thickness in frame units. The value must
be greater than 0.0001 and less than 100.

NumEllipsePts Pointer to integer value specifying the number of points to use for circles and
ellipses. The value must be between 2 and 720.

ArrowheadStyl
e

Pointer to integer value specifying the arrowhead style.

0=Plain 2=Hollow 1=Filled

45



Parameter Description

ArrowheadAtta
chment

Pointer to integer value specifying where to attach arrowheads.

0=None
1=Beginning

2=End 
3=Both

ArrowheadSize Pointer to double value specifying the arrowhead size in frame units (from 0 to 100).

ArrowheadAngl
e

Pointer to double value specifying the arrowhead angle in degrees.

Scope Pointer to integer value specifying the scope with respect to frames. A local scope
places the object in the active frame. A global scope places the object in all frames
that contain the active frame’s data set.

0=Global 1=Local.

Clipping Specifies whether to clip the geometry (that is, only plot the geometry within the
viewport or the frame).

0=ClipToViewport 1=ClipToFrame

NumSegments Pointer to integer value specifying the number of polyline segments.

NumSegPts Array of integer values specifying the number of points in each of the NumSegments
segments.

XGeomData

Array of floating-point values specifying the X-, Y- and Z-coordinates. Refer to Data
Values for information regarding the values required for each GeomType.

ThetaGeomData

YGeomData

RGeomData

ZGeomData

MFC Macro function command. Must be null terminated.

Origin positions

The origin (XOrThetaPos, YOrRPos, ZPos) of each geometry type is listed below:

• SQUARE- lower left corner at XOrThetaPos, YOrRPos.

• RECTANGLE- lower left corner at XOrThetaPos, YOrRPos.

• CIRCLE - centered at XOrThetaPos, YOrRPos.

• ELLIPSE- centered at XOrThetaPos, YOrRPos.

• LINE - anchored at XOrThetaPos, YOrRPos.

• LINE3D- anchored at XOrThetaPos, YOrRPos, ZPos.

46



Data Values

The origin (XOrThetaGeomData, YOrRGeomData, ZGeomData) of each geometry type is listed
below:

• SQUARE- set XOrThetaGeomData equal to the desired length.

• RECTANGLE- set XOrThetaGeomData equal to the desired width and YOrThetaGeomData equal to
the desired height.

• CIRCLE - set XOrThetaGeomData equal to the desired radius.

• ELLIPSE- set XOrThetaGeomData equal to the desired width along the x-axis and
YOrThetaGeomData equal to the desired width along the y-axis.

• LINE - specify the coordinate positions for the data points in each line segment with
*XOrThetaGeomData * and YOrRGeomData.

• LINE3D- specify the coordinate positions for the data points in each line segment with
XOrThetaGeomData, YOrRGeomData and ZGeomData.

TECIJKPTN142

When writing a partitioned IJK-ordered zone to a .szplt file, TECIJKPTN142 provides information about
the partition about to be written. Must be called after TECZNE142 (and, for TecIO-MPI, TECZNEMAP142) but
before calling TECDAT142 to actually write the data. Should not be called for non-partitioned zones (or
equivalently, zones that have only one partition).

The TECIJKPTN142 function specifies the I, J, and K indices of the partition (excluding any "ghost" cells),
allowing the partitions to be later reassembled seamlessly into a single zone when loaded for
visualization. The indices passed refer to indices of the entire IJK-ordered zone. Therefore, the I
dimension (for example) of a partition is imax - imin + 1.

Index ranges of neighboring partitions must exactly coincide: for example, if one zone’s imax is 25, the
imin of the partition immediately to the right must be 25.

Data subsequently written using TECDAT142 must output only the data corresponding to the nodes and
cells indicated by this range.

FORTRAN Syntax:

 INTEGER*4 FUNCTION TECIJKPTN142(partition,
&                                imin,
&                                jmin,
&                                kmin,
&                                imax,
&                                jmax,
&                                kmax)
 INTEGER*4                       partition

47



 INTEGER*4                       imin
 INTEGER*4                       jmin
 INTEGER*4                       kmin
 INTEGER*4                       imax
 INTEGER*4                       jmax
 INTEGER*4                       kmax

C Syntax:

#include TECIO.h
INTEGER4 TECIJKPTN(INTEGER4 *partition,
                   INTEGER4 *imin,
                   INTEGER4 *jmin,
                   INTEGER4 *kmin,
                   INTEGER4 *imax,
                   INTEGER4 *jmax,
                   INTEGER4 *kmax);

Return Value

0 if successful, nonzero if unsuccessful.

Parameters

Parameter Description

partition The number of the current partition. Partitions are numbered from 1 to the number
of partitions (as specified in the TECZNEMAP142 call inclusive).

imin The smallest I index in the partition.

jmin The smallest J index in the partition.

kmin The smallest K index in the partition.

imax The largest I index in the partition.

jmax The largest J index in the partition.

kmax The largest K index in the partition.

TECINI142

Initializes the process of writing a binary data file. This function must be called first before any other
TecIO calls are made (except TECFOREIGN142).

You may write to multiple files by calling TECINI142 more than once. Each time TECINI142 is called, a
new file is created and a new context established for it. Use TECFIL142 to switch between files. For each
call to TECINI142, there must be a corresponding call to TECEND142.

48



If using TecIO-MPI, the TECINI142 call must be followed immediately by a call to TECMPIINIT142.

FORTRAN Syntax:

 INTEGER*4 FUNCTION TECINI142(Title,
&                             Variables,
&                             FName,
&                             ScratchDir,
&                             FileFormat,
&                             FileType,
&                             Debug,
&                             VIsDouble)
 CHARACTER*(*)                Title
 CHARACTER*(*)                Variables
 CHARACTER*(*)                ScratchDir
 CHARACTER*(*)                FName
 INTEGER*4                    FileFormat
 INTEGER*4                    FileType
 INTEGER*4                    Debug
 INTEGER*4                    VIsDouble

C Syntax:

#include TECIO.h
INTEGER4 TECINI142(char  *Title,
                   char  *Variables,
                   char  *FName,
                   char *ScratchDir,
                   INTEGER4 *FileFormat,
                   INTEGER4 *FileType,
                   INTEGER4 *Debug
                   INTEGER4 *VIsDouble);

Return Value

0 if successful, -1 if unsuccessful.

Parameters

Parameter Description

Title Title of the data set. Must be null terminated.

Variables List of variable names. If a comma appears in the string it will be used as the
separator between variable names, otherwise a space is used. Must be null
terminated.

49



Parameter Description

FName Name of the file to create. Must be null terminated.

ScratchDir Name of the directory to put the scratch file. Must be null terminated.

FileFormat Specifies the file format to be used. Ignored by TecIO-MPI, which always writes
.szplt files.

0=Tecplot binary (.plt) 1=Tecplot subzone (.szplt)

FileType Specify whether the file is a full data file (containing both grid and solution data), a
grid file or a solution file.

0=Full 1=Grid 2=Solution

Debug Pointer to the integer flag for debugging. Set to 0 for no debugging or 1 to debug.
When set to 1, the debug messages will be sent to the standard output (stdout).

VIsDouble Pointer to the integer flag for specifying whether field data generated in future calls
to TECDAT142 are to be written in single or double precision.

0=Single 1=Double

Examples

Each example in Examples calls TECINI142 at least once. Refer to this section for details.

TECLAB142

Adds custom labels to the data file. Custom Labels can be used for axis labels, legend text, and tick
mark labels. The first custom label string corresponds to a value of one on the axis, the next to a value
of two, the next to a value of three, and so forth. You must have at least one zone in your data set.

A custom label set is added to your file each time you call TECLAB142. You may have up to sixty labels in
a set and up to ten sets in a file. Each label must be surrounded by double-quotes, e.g. "Mon" "Tues"
"Wed", etc. The \n escape sequence may be used to indicate a line break.

Custom labels are assigned to an object via the Tecplot interface. Refer to User’s Manual for details.

When using TecIO-MPI, may only be called from the main process.

FORTRAN Syntax:

 INTEGER*4 FUNCTION TECLAB142(Labels)
 CHARACTER*(*)                Labels

50

360-users-manual.pdf


C Syntax:

#include TECIO.h
INTEGER4 TECLAB142(char *Labels);

Return Value

0 if successful, -1 if unsuccessful.

Parameters

Parameter Description

Labels Character string of custom labels. Each label must be surrounded by double-quotes.
Separate labels by a comma or space. You may have up to sixty labels in each call to
TECLAB142.

Examples

To add the days of the week to your data file, to be displayed along the x-axis:

char Labels[60] = "\"Mon\", \"Tues\",\"Wed\",\"Thurs\", \"Fri\"";
TECLAB142(&Labels[0]);

TECMPIINIT142

Initializes MPI and joins a specified MPI communicator. This is a collective function. Must be called
immediately after TECINI142 by all processes in the supplied communicator, and will block until all
processes have called it. If processes call TECINI142 multiple times to create multiple files, TECMPIINIT142
must be called immediately after each call to TECINI142. All processes may then switch output among
the open files by calling TECFIL142 as usual.

The mainrank process is the only process that may output non-zone data, such as text, geometries and
aux data.

For TecIO-MPI only; does not exist in standard TecIO library.

FORTRAN Syntax:

 INTEGER*4 FUNCTION TECMPIINIT142(communicator, mainrank)
 INTEGER*4 communicator
 INTEGER*4 mainrank

51



C Syntax:

#include TECIO.h
INTEGER4 TECMPIINIT142(void* communicator,
                       INTEGER4 const* mainrank);

Return Value

0 if successful, nonzero if error.

Parameters

Parameter Description

communicator Pointer to MPI communicator. May be MPI_COMM_WORLD or any other MPI_Comm that
includes all MPI processes involved in output.

mainrank The ID of the process (rank) within the communicator designated as the main
process. Must be the same for all calling processes.

TECNOD142

Writes an array of node data to the binary data file. This is the connectivity list for cell-based finite
element zones (line segment, triangle, quadrilateral, brick, and tetrahedral zones). The connectivity list
for face-based finite element zones (polygonal and polyhedral) is specified via TECPOLYFACE142.

 Remember that Tecplot Focus cannot load face-based (polygonal or polyhedral) data.

Note that node data are not stored in solution files, so do not call TECNOD142 if the file type specified in
TECINI142 was SOLUTION.

See also TECNODE142, which allows you to provide connectivity information in arbitrarily-sized chunks
rather than requiring it all at once.

FORTRAN Syntax:

 INTEGER*4 FUNCTION TECNOD142(NData)
 INTEGER*4 NData (T, M)

C Syntax:

#include TECIO.h
INTEGER4 TECNOD142(INTEGER4 *NData);

52



Return Value

0 if successful, -1 if unsuccessful.

Parameters

Parameter Description

NData Array of integers listing the nodes for each
element. This is the connectivity list, dimensioned
(T, M) (T moving fastest), where M is the number
of elements in the zone and T is set according to
the following list:

2=Line Segment
3=Triangle
4=Quadrilateral

4=Tetrahedral
8=Brick

Examples:

Refer to Face Neighbors for examples using TECNOD142.

TECNODE142

Writes a chunk of node data to the binary data file. This is the connectivity list for cell-based finite
element zones (line segment, triangle, quadrilateral, brick, and tetrahedral zones). The connectivity list
for face-based finite element zones (polygonal and polyhedral) is specified via TECPOLYFACE142.

 Remember that Tecplot Focus cannot load face-based (polygonal or polyhedral) data.

Note that node data are not stored in solution files, so do not call TECNODE142 if the file type specified in
TECINI142 was SOLUTION.

This function is similar to TECNOD142 but does not require that the entire connectivity list be provided at
once. Rather, you may call TECNODE142 as many times as you like, providing connectivity information
for as many elements as you like each time, so long as you eventually provide connectivity information
for all elements in the zone.

FORTRAN Syntax:

 INTEGER*4 FUNCTION TECNODE142(N, NData)
 INTEGER*4 N
 INTEGER*4 NData (T, M)

53



C Syntax:

#include TECIO.h
INTEGER4 TECNODE142(INTEGER4 *N,
                    INTEGER4 *NData);

Return Value

0 if successful, -1 if unsuccessful.

Parameters

Parameter Description

N Pointer to an integer indicating the number of
values to write.

NData Array of integers listing the nodes for each
element. This is the connectivity list, dimensioned
(T, N) (T moving fastest), where N is the number of
elements provided in this call to TECNODE142 and
T is set according to the following list:

2=Line Segment
3=Triangle
4=Quadrilateral

4=Tetrahedral
8=Brick

TECPOLYFACE142

Writes the face nodes of the face map for polygonal and polyhedral zones. All numbering schemes are
one-based. The first node is Node 1, the first Face is Face 1, and so forth. Refer to Defining Polyhedral
and Polygonal Data for additional information.

 Remember that Tecplot Focus cannot load face-based (polygonal or polyhedral) data.

This function may be called any number of times, with any number of face nodes each time, so long as
face nodes for all faces are eventually written. You must also, at some point, call TECPOLYBCONN142 to
specify any boundary connections in the zone; this can be done in any order, even to the point of
interleaving calls to specify boundary connections and face nodes.

Note that face data are not stored in solution files, so do not call TECPOLYFACE142 if the file type specified
in TECINI142 was SOLUTION.

Avoid creating concave objects (or bad meshes), as they will not look good when plotted.

54



FORTRAN Syntax:

 INTEGER*4 FUNCTION TECPOLYFACE142(
&                                  NumFaces,
&                                  FaceNodeCounts,
&                                  FaceNodes,
&                                  FaceLeftElems,
&                                  FaceRightElems)
 INTEGER*4                         NumFaces(*)
 INTEGER*4                         FaceNodeCounts(*)
 INTEGER*4                         FaceNodes(*)
 INTEGER*4                         FaceLeftElems(*)
 INTEGER*4                         FaceRightElems(*)

C Syntax:

#include TECIO.h
INTEGER4
TECPOLYFACE142(INTEGER4 *NumFaces,
               INTEGER4 *FaceNodeCounts,
               INTEGER4 *FaceNodes,
               INTEGER4 *FaceLeftElems,
               INTEGER4 *FaceRightElems);

Return Value

0 if successful; -1 if unsuccessful.

Parameters

Parameter Description

NumFaces The number of faces being defined in this call. TECPOLYFACE142 may be called any
number of times with any number of faces in each call, so long as all faces in the
zone are eventually defined.

FaceNodeCount
s

An array used to define the number of nodes in each face. The array is dimensioned
by NumFaces. This is NULL for polygonal zones, as each face in a polygonal zone is
already known to have exactly two nodes.

FaceNodes An array used to specify the nodes belonging to each face. The array is dimensioned
by the sum of the FaceNodeCounts array for polyhedral zones or, for polygonal
zones, twice NumFaces.

FaceLeftElems An array used to define the left neighboring element for each face. The array is
dimensioned by NumFaces.

55



Parameter Description

FaceRightElems An array used to define the right neighboring element for each face. The array is
dimensioned by NumFaces.

Examples

Refer to the following sections for examples using TECPOLYFACE142:

• Polygonal Example

• Multiple Polyhedral Zones

• Multiple Polygonal Zones

• Polyhedral Example

TECPOLYBCONN142

Writes the boundary connections of the face map for polygonal and polyhedral zones. Boundary faces
are faces that either have more than one neighboring cell on a side or have at least one neighboring
cell in another zone. (Refer to Boundary Faces and Boundary Connections for a simple example.)

 Remember that Tecplot Focus cannot load face-based (polygonal or polyhedral) data.

All numbering schemes are one-based. The first node is Node 1, the first face is Face 1, and so forth.
Refer to Defining Polyhedral and Polygonal Data for additional information.

This function may be called any number of times, with any number of boundary connections each
time, so long as boundary connections for all faces are eventually written. You must also, at some
point, call TECPOLYFACE142 at least once to specify the face nodes. This can be done in any order, even to
the point of interleaving calls to specify boundary connections and face nodes.

Note that connection data are not stored in solution files, so do not call TECPOLYBCONN142 if the file
type specified in TECINI142 was SOLUTION.

Avoid creating concave objects (or bad meshes), as they will not look good when plotted.

FORTRAN Syntax:

 INTEGER*4 FUNCTION TECPOLYBCONN142(
&                                   NumBndryFaces,
&                                   FaceBndryConnectionCounts,
&                                   FaceBndryConnectionElems,
&                                   FaceBndryConnectionZones)
 INTEGER*4                          NumBndryFaces(*)
 INTEGER*4                          FaceBndryConnectionCounts(*)
 INTEGER*4                          FaceBndryConnectionElems(*)

56



 INTEGER*2                          FaceBndryConnectionZones(*)

C Syntax:

#include TECIO.h
INTEGER4 TECPOLYBCONN142(INTEGER4 *NumBndryFaces,
                         INTEGER4 *FaceBndryConnectionCounts,
                         INTEGER4 *FaceBndryConnectionElems,
                         INTEGER4 *FaceBndryConnectionZones);

Return Value

0 if successful, -1 if unsuccessful.

Parameters

Parameter Description

NumBndryFace
s

The number of boundary faces being defined in this call. Each call to
TECPOLYBCONN142 may define any number of boundary faces, so long as all
boundary faces (i.e., NumConnectedBoundaryFaces in TECZNE142 or TECPOLYZNE142)
are eventually defined.

FaceBndryConn
ectionCounts

An array used to define the number of boundary connections for each boundary
face. The array is dimensioned by NumBndryFaces.

FaceBndryConn
ectionElems

An array used to define the boundary element(s) to which each boundary face is
connected.

FaceBndryConn
ectionZones

An array used to define the zone(s) to which each boundary element belongs.

Examples

Refer to the following sections for examples using TECPOLYBCONN142:

• Polygonal Example

• Multiple Polyhedral Zones

• Multiple Polygonal Zones

• Polyhedral Example

TECPOLYZNE142

This function is provided as an alternative to calling TECZNE142 for face-based finite-element zones
(FEPOLYGON or FEPOLYHEDRON). You are encouraged to use this function instead of TECZNE142or such
zone. This function contains only parameters relevant to face-based zones and also supports zones

57



with number of faces or number of face nodes exceeding 32-bit limitations (beyond about two billion).
TECPOLYZNE142 writes header information about the next face-based zone to be added to the data file.
This function is not currently available in TecIO-MPI, because face-based zones are not currently
supported by the .szplt file format. After TECPOLYZNE142 is called, you must call TECDAT142 one or
more times, then call TECPOLYFACE142 one or more times, and call TECPOLYBCONN142 one or more times if
NumConnectedBoundaryFaces is non-zero..

 Remember that Tecplot Focus cannot load face-based (polygonal or polyhedral) data.

FORTRAN Syntax:

 INTEGER*4 FUNCTION TECPOLYZNE142(ZoneTitle,
&                                 ZoneType,
&                                 NumNodes,
&                                 NumCells,
&                                 NumFaces,
&                                 TotalNumFaceNodes,
&                                 SolutionTime,
&                                 StrandID,
&                                 ParentZone,
&                                 NumConnectedBoundaryFaces,
&                                 TotalNumBoundaryConnections,
&                                 PassiveVarList,
&                                 ValueLocation,
&                                 ShareVarFromZone,
&                                 ShareConnectivityFromZone)
 CHARACTER*(*)                    ZoneTitle
 INTEGER*4                        ZoneType
 INTEGER*4                        NumNodes
 INTEGER*4                        NumCells
 INTEGER*8                        NumFaces
 INTEGER*8                        TotalNumFaceNodes
 DOUBLE PRECISION                 SolutionTime
 INTEGER*4                        StrandID
 INTEGER*4                        ParentZone
 INTEGER*4                        NumConnectedBoundaryFaces
 INTEGER*4                        TotalNumBoundaryConnections
 INTEGER*4                        PassiveVarList(*)
 INTEGER*4                        ValueLocation(*)
 INTEGER*4                        ShareVarFromZone(*)
 INTEGER*4                        ShareConnectivityFromZone

C Syntax:

#include TECIO.h

58



INTEGER4 TECPOLYZNE142(char  *ZoneTitle,
                       INTEGER4 *ZoneType,
                       INTEGER4 *NumNodes,
                       INTEGER4 *NumCells,
                       INTEGER8 *NumFaces,
                       INTEGER8 *TotalNumFaceNodes,
                       double  *SolutionTime,
                       INTEGER4 *StrandID,
                       INTEGER4 *ParentZone,
                       INTEGER4 *NumConnectedBoundaryFaces,
                       INTEGER4 *TotalNumBoundaryConnections,
                       INTEGER4 *PassiveVarList,
                       INTEGER4 *ValueLocation,
                       INTEGER4 *ShareVarFromZone,
                       INTEGER4 *ShareConnectivityFromZone)

Return Value

0 if successful; -1 if unsuccessful.

Parameters

Parameter Notes

ZoneTitle The title of the zone. Must be null-terminated.

ZoneType

The type of the zone:

6=FEPOLYGON 7=FEPOLYHEDRON

NumNodes The number of nodes.

NumCells The number of elements.

NumFaces The number of faces.

SolutionTime Scalar double precision value specifying the time associated with the zone. Refer to
User’s Manual for additional information on working with transient data.

StrandID

Scalar integer value specifying the strand to which the zone is associated.

0 = static zone, not associated with a strand.
Values greater than 0 indicate a zone is assigned to a given strand.

Refer to User’s Manual for additional information on strands.

If you are converting your function calls from function calls 109 or older, use "0" for
StrandID.

ParentZone ParentZone is no longer used. Enter 0 for this value.

59

360-users-manual.pdf
360-users-manual.pdf


Parameter Notes

TotalNumFaceN
odes

Total number of nodes for all faces. It is also the sum of the FaceNodeCounts array
(defined in TECPOLYFACE142). For polygonal zones this value is equivalent to 2 *
NumFaces. NumFaces = the number of faces in the zone. Refer to FaceNodeCounts
and FaceNodes for simple example.

NumConnected
BoundaryFaces

Total number of boundary faces, where boundary faces are faces that either have
more than one neighboring cell on a side or have a neighboring cell from another
zone. Refer to Boundary Faces and Boundary Connections for simple example.

TotalNumBoun
daryConnection
s

Total number of boundary connections for all faces. In general,
TotalNumBoundaryConnections will be equal to NumConnectedBoundaryFaces.
However, TotalNumBoundaryConnections must be greater than or equal to
NumConnectedBoundaryFaces. Refer to Boundary Faces and Boundary Connections
for simple example.

PassiveVarList Array, dimensioned by the number of variables, of 4 byte integer values specifying
the active/passive nature of each variable. A value of 0 indicates the associated
variable is active while a value of 1 indicates that it is passive. If all variables are
active, you may pass NULL rather than an array of zeroes. Refer to
[introduction/best-practices/passive-variables] for additional information.

ValueLocation The location of each variable in the data set. ValueLocation(I) indicates the location
of variable I for this zone. 0=cell-centered, 1=node-centered. Pass null to indicate that
all variables are node-centered.

ShareVarFromZ
one

Indicates variable sharing. Array, dimensioned by the number of variables.
ShareVarFromZone(I) indicates the zone number with which variable I will be
shared. This reduces the amount of data to be passed via TECDAT142. A value of 0
indicates that the variable is not shared. Pass null to indicate no variable sharing for
this zone. You must pass null for the first zone in a data set (there is no data
available to share).

ShareConnectiv
ityFromZone

Indicates the zone number with which connectivity is shared. Pass 0 to indicate no
connectivity sharing. You must pass 0 for the first zone in a data set. NOTE:
Connectivity cannot be shared between cell-based and face-based finite element
zones.

Examples

Refer to the following sections for examples using TECPOLYZNE142:

• Polygonal Example

• Multiple Polyhedral Zones

• Multiple Polygonal Zones

• Polyhedral Example

60



TECTXT142

Adds a text box to the file. When using TecIO-MPI, may only be called from the main process.

FORTRAN Syntax:

 INTEGER*4 FUNCTION TECTXT142(XOrThetaPos,
&                             YOrRPos,
&                             ZOrUnusedPos,
&                             PosCoordMode,
&                             AttachToZone,
&                             Zone,
&                             Font,
&                             FontHeightUnits,
&                             FontHeight,
&                             BoxType,
&                             BoxMargin,
&                             BoxLineThickness,
&                             BoxColor,
&                             BoxFillColor,
&                             Angle,
&                             Anchor,
&                             LineSpacing,
&                             TextColor,
&                             Scope,
&                             Clipping,
&                             Text,
&                             MFC)
 DOUBLE PRECISION             XOrThetaPos
 DOUBLE PRECISION             YOrRPos
 DOUBLE PRECISION             ZOrUnusedPos
 INTEGER*4                    PosCoordMode
 INTEGER*4                    AttachToZone
 INTEGER*4                    Zone
 INTEGER*4                    Font
 INTEGER*4                    FontHeightUnits
 DOUBLE PRECISION             FontHeight
 INTEGER*4                    BoxType
 DOUBLE PRECISION             BoxMargin
 DOUBLE PRECISION             BoxLineThickness
 INTEGER*4                    BoxColor
 INTEGER*4                    BoxFillColor
 DOUBLE PRECISION             Angle
 INTEGER*4                    Anchor
 DOUBLE PRECISION             LineSpacing
 INTEGER*4                    TextColor
 INTEGER*4                    Scope

61



 INTEGER*4                    Clipping
 CHARACTER*(*)                Text
 CHARACTER*(*)                MFC

C Syntax:

#include TECIO.h
INTEGER4 TECTXT142(double  *XOrThetaPos,
                   double  *YOrRPos,
                   double  *ZOrUnusedPos,
                   INTEGER4 *PosCoordMode,
                   INTEGER4 *AttachToZone,
                   INTEGER4 *Zone,
                   INTEGER4 *Font,
                   INTEGER4 *FontHeightUnits,
                   double *FontHeight,
                   INTEGER4 *BoxType,
                   double *BoxMargin,
                   double *BoxLineThickness,
                   INTEGER4 *BoxColor,
                   INTEGER4 *BoxFillColor,
                   double *Angle,
                   INTEGER4 *Anchor,
                   double *LineSpacing,
                   INTEGER4 *TextColor,
                   INTEGER4 *Scope,
                   INTEGER4 *Clipping,
                   char *Text,
                   char *MFC)

Return Value

0 if successful, -1 if unsuccessful.

Parameters

Parameter Description

XOrThetaPos Pointer to double value specifying the X-position or Theta-position (polar plots only)
of the text.

YOrRPos Pointer to double value specifying the Y-position or R-position (polar plots only) of
the text.

ZOrUnusedPos Pointer to double value specifying the Z-position of the text.

62



Parameter Description

PosCoordMode Pointer to integer value specifying the position coordinate system.

0=Grid 1=Frame 6=Grid3D

If you use Grid3D, the plot type must be set to 3D Cartesian to view your text box.

AttachToZone Pointer to integer flag to signal that the text is "attached" to a zone.

Zone Pointer to integer value specifying the zone number to attach to.

Font Pointer to integer value specifying the font.

0=Helvetica
1=Helvetica Bold
2=Greek
3=Math
4=User-Defined
5=Times

6=Times Italic
7=Times Bold
8=Times Italic Bold
9=Courier
10=Courier Bold

FontHeightUnit
s

Pointer to integer value specifying the font height units.

0=Grid 1=Frame 2=Point

FontHeight Pointer to double value specifying the font height. If PosCoordMode is set to FRAME,
the value range is zero to 100.

BoxType Pointer to integer value specifying the box type.

0=None 1=Filled 2=Hollow

BoxMargin Pointer to double value specifying the box margin (in frame units ranging from 0 to
100).

BoxLineThickn
ess

Pointer to double value specifying the box line thickness (in frame units ranging
from 0.0001 to 100).

BoxColor Pointer to integer value specifying the color to assign to the box.

0=Black
1=Red
2=Green
3=Blue
4=Cyan
5=Yellow
6=Purple
7=White
8=Custom1

9=Custom2
10=Custom3
11=Custom4
12=Custom5
13=Custom6
14=Custom7
15=Custom8

63



Parameter Description

BoxFillColor Pointer to integer value specifying the fill color to assign to the box. (See BoxColor)

Angle Pointer to double value specifying the text angle in degrees.

Anchor Pointer to integer value specifying where to anchor the text.

0=Left
1=Center
2=Right
3=MidLeft
4=MidCenter

5=MidRight
6=HeadLeft
7=HeadCenter
8=HeadRight

LineSpacing Pointer to double value specifying the text line spacing.

TextColor Pointer to integer value specifying the color to assign to the text. (See BoxColor)

Scope Pointer to integer value specifying the scope with respect to frames. A local scope
places the object in the active frame. A global scope places the object in all frames
that contain the active frame’s data set.

0=Global 1=Local

Clipping Specifies whether to clip the text (that is, only plot the text within the viewport or
the frame).

0=ClipToViewport 1=ClipToFrame.

Text Character string representing text to display. Must be null terminated.

MFC Macro function command. Must be null terminated.

Examples

Refer to Text Example for an example of working with TECTXT142.

TECUSR142

Writes a character string to the data file in a USERREC record. USERREC records are ignored by Tecplot
360, but may be used by add-ons.

When using TecIO-MPI, may only be called from the main process.

FORTRAN Syntax:

 INTEGER*4 FUNCTION TECUSR142(S)
 CHARACTER*(*) S

64



C Syntax:

#include TECIO.h
INTEGER4 TECUSR142(CHAR *S);

Return Value

0 if successful, -1 if unsuccessful.

Parameters

Parameter Description

S The character string to write to the data file. Must be null-terminated.

TECVAUXSTR142

Writes an auxiliary data item to the data file for the specified variable. Must be called after TECINI142
and before TECEND142. Auxiliary data may be used by text, macros, equations (if the data is numeric)
and add-ons. It may be viewed directly in the Aux Data page of the Data Set Information dialog
(accessed via the Data menu). The value can be verified by selecting "Variable" from the "Show
Auxiliary Data" menu and selecting the corresponding variable number from the menu.

When using TecIO-MPI, may only be called from the main process.

FORTRAN Syntax:

 INTEGER*4 FUNCTION TECVAUXSTR142(Var, Name, Value)
 INTEGER*4          Var
 CHARACTER*(*)      Name
 CHARACTER*(*)      Value

C Syntax:

#include TECIO.h
INTEGER4 TECAUXSTR142(INTEGER4 *Var,
                      char *Name,
                      char *Value);

Return Value

0 if successful, -1 if unsuccessful.

Parameters

65



Parameter Description

Var The variable number for which to set the auxiliary data. Variable numbers start at
one.

Name The name of the auxiliary data item. If a data item with this name already exists, its
value will be overwritten. Must be a null-terminated character string and cannot
contain spaces.

Value The auxiliary data value to be written to the data file. Must be a null-terminated
character string.

Example:

The following example illustrates adding auxiliary data to the pressure variable in the data file. In this
case, pressure is the third variable.

INTEGER4 Var                    = 3;
char     PressureUnitsName[16]  = "PressureUnits";
char     PressureUnitsValue[16] = "Pascal (Pa)";

TECVAUXSTR142(&Var,
              &PressureUnitsName[0],
              &PressureUnitsValue[0]);

TECZAUXSTR142

Writes an auxiliary data item for the current zone to the data file. Must be called immediately after
TECZNE142 or TECPOLYZNE142 or TECZNEFEMIXED142for the desired zone. Auxiliary data may be used by text,
macros, equations (if it is numeric) and add-ons. It may be viewed directly in the Aux Data page of the
Data Set Information dialog (accessed via the Data menu). The value can be verified by selecting
"Zone" from the "Show Auxiliary Data" menu and selecting the corresponding zone number.

When using TecIO-MPI, may only be called from the main process.

FORTRAN Syntax:

 INTEGER*4 FUNCTION TECZAUXSTR142(Name, Value)
 CHARACTER*(*)      Name
 CHARACTER*(*)      Value

C Syntax:

#include TECIO.h
INTEGER4 TECZAUXSTR142(char *Name,

66



                       char *Value);

Return Value

0 if successful, -1 if unsuccessful.

Parameters

Parameter Description

Name The name of the auxiliary data item. If a data item with this name already exists, its
value will be overwritten. Must be a null-terminated character string and cannot
contain spaces.

Value The auxiliary data value to be written to the data file. Must be a null-terminated
character string.

Example:

The following example code adds auxiliary data to the zone. NOTE: TECZAUXSTR142 must be called
immediately after TECZNE142 or TECPOLYZNE142 or TECZNEFEMIXED142for the desired zone.

char  CreatedByName[16]   = "CreatedBy";
char  CreatedByValue[16]  = "My Company";

TECZAUXSTR142(&CreatedByName[0],
              &CreatedByValue[0]);

TECZNE142

Writes header information about the next zone to be added to the data file. For face-based finite-
element zones, you are encouraged to use TECPOLYZNE142 instead because that function is specifically
designed for those zones and has features that TECZNE142 does not support (specifically support for
more than two-billion faces and/or face nodes). For writing mixed-element or higher-order-element
zones, you must instead call TECZNEFEMIXED142. When using TecIO-MPI, TECZNE142 should be
immediately followed by a call to TECZNEMAP142.

After TECZNE142 (and TECZNEMAP142, if necessary) is called, you must call TECDAT142 one or more times.
If the zone is a finite element zone, call TECNOD142/ TECNODE142 (cell-based zones) or TECPOLYFACE142
/TECPOLYBCONN142 (face-based zones) after calling TECDAT142.

 Remember that Tecplot Focus cannot load face-based (polygonal or polyhedral) data.

FORTRAN Syntax:

67



 INTEGER*4 FUNCTION TECZNE142(ZoneTitle,
&                             ZoneType,
&                             IMxOrNumPts,
&                             JMxOrNumElements,
&                             KMxOrNumFaces,
&                             ICellMax,
&                             JCellMax,
&                             KCellMax,
&                             SolutionTime,
&                             StrandID,
&                             ParentZone,
&                             IsBlock,
&                             NumFaceConnections,
&                             FaceNeighborMode,
&                             TotalNumFaceNodes,
&                             NumConnectedBoundaryFaces,
&                             TotalNumBoundaryConnections,
&                             PassiveVarList,
&                             ValueLocation,
&                             ShareVarFromZone,
&                             ShareConnectivityFromZone)
 CHARACTER*(*)                ZoneTitle
 INTEGER*4                    ZoneType
 INTEGER*4                    IMxOrNumPts
 INTEGER*4                    JMxOrNumElements
 INTEGER*4                    KMxOrNumFaces
 INTEGER*4                    ICellMax
 INTEGER*4                    JCellMax
 INTEGER*4                    KCellMax
 DOUBLE PRECISION             Solution Time
 INTEGER*4                    StrandID
 INTEGER*4                    ParentZone
 INTEGER*4                    IsBlock
 INTEGER*4                    NumFaceConnections
 INTEGER*4                    FaceNeighborMode
 INTEGER*4                    TotalNumFaceNodes,
 INTEGER*4                    NumConnectedBoundaryFaces
 INTEGER*4                    TotalNumBoundaryConnections
 INTEGER*4                    PassiveVarList(*)
 INTEGER*4                    ValueLocation(*)
 INTEGER*4                    ShareVarFromZone(*)
 INTEGER*4                    ShareConnectivityFromZone

C Syntax:

#include TECIO.h

68



##INTEGER4  TECZNE142(char  *ZoneTitle,
                      INTEGER4 *ZoneType,
                      INTEGER4 *IMxOrNumPts,
                      INTEGER4 *JMxOrNumElements,
                      INTEGER4 *KMxOrNumFaces,
                      INTEGER4 *ICellMax,
                      INTEGER4 *JCellMax,
                      INTEGER4 *KCellMax,
                      double  *SolutionTime,
                      INTEGER4 *StrandID,
                      INTEGER4 *ParentZone,
                      INTEGER4 *IsBlock,
                      INTEGER4 *NumFaceConnections,
                      INTEGER4 *FaceNeighborMode,
                      INTEGER4 *TotalNumFaceNodes,
                      INTEGER4 *NumConnectedBoundaryFaces,
                      INTEGER4 *TotalNumBoundaryConnections,
                      INTEGER4 *PassiveVarList,
                      INTEGER4 *ValueLocation,
                      INTEGER4 *ShareVarFromZone,
                      INTEGER4 *ShareConnectivityFromZone)

Return Value

0 if successful, -1 if unsuccessful.

Parameters

Parameter Applies to Zone Type(s) Notes

ZoneTitle ALL The title of the zone. Must be
null-terminated.

ZoneType ALL The type of the zone:

0=ORDERED
1=FELINESEG
2=FETRIANGLE
3=FEQUADRIL
ATERAL

4=FETETRAHE
DRON
5=FEBRICK
6=FEPOLYGON
7=FEPOLYHED
RON

IMax or NumPts ALL For ordered zones, the number
of nodes in the I-index direction.
For finite element zones (cell-
based and face-based), the
number of nodes.

69



Parameter Applies to Zone Type(s) Notes

JMax or NumElements ALL For ordered zones, the number
of nodes in the J index direction.
For finite element zones (cell-
based and face-based), the
number of elements.

KMax or NumFaces ORDERED
FEPOLYGON
FEPOLYHEDRON

For ordered zones, the number
of nodes in the K index direction.
For polyhedral and polygonal
finite element zones, the number
of faces. Not used for all other
finite element zone types.

ICellMax N/A Reserved for future use. Set to
zero.

JCellMax N/A Reserved for future use. Set to
zero.

KCellMax N/A Reserved for future use. Set to
zero.

SolutionTime ALL Scalar double precision value
specifying the time associated
with the zone. Refer to User’s
Manual for additional
information on working with
transient data.

StrandID ALL Scalar integer value specifying
the strand to which the zone is
associated.

0 = static zone, not associated
with a strand.
Values greater than 0 indicate a
zone is assigned to a given
strand.

Refer to User’s Manual for
additional information on
strands.

If you are converting your
function calls from function calls
109 or older, use "0" for
StrandID.

70

360-users-manual.pdf
360-users-manual.pdf
360-users-manual.pdf


Parameter Applies to Zone Type(s) Notes

ParentZone ALL ParentZone is no longer used.
Enter 0 for this value.

IsBlock ALL Deprecated field. Always set to 1.

NumFaceConnections ORDERED
FELINESEG
FETRIANGLE 
FEQUADRILATERAL
FETETRAHEDRON
FEBRICK

Used for cell-based finite
element and ordered zones only.
The number of face connections
that will be passed in routine
TECFACE142.

FaceNeighborMode Used for cell-based1 finite
element and ordered zones only.
The type of face connections that
will be passed in routine
TECFACE142.

0=LocalOneToOne
1=LocalOneToMany
2=GlobalOneToOne
3=GlobalOneToMany

TotalNumFaceNodes FEPOLYGON
FEPOLYHEDRON

Used for face-based2 finite
element zones Total number of
nodes for all faces. It is also the
sum of the FaceNodeCounts
array (defined in
TECPOLYFACE142). For polygonal
zones this value is equivalent to
2 * NumFaces. NumFaces = the
number of faces in the zone.
Refer to FaceNodeCounts and
FaceNodes for simple example.

NumConnectedBoundaryFaces FEPOLYGON
FEPOLYHEDRON

Used for face-based2 finite
element zones. Total number of
boundary faces, where boundary
faces are faces that either have
more than one neighboring cell
on a side or have a neighboring
cell from another zone. Refer to
Boundary Faces and Boundary
Connections for simple example.

71



Parameter Applies to Zone Type(s) Notes

TotalNumBoundaryConnections FEPOLYGON
FEPOLYHEDRON

Used for face-based2 finite
element zones. Total number of
boundary connections for all
faces. In general,
TotalNumBoundaryConnections
will be equal to
NumConnectedBoundaryFaces
However,
TotalNumBoundaryConnections
must be greater than or equal to
equal to
NumConnectedBoundaryFaces.
Refer to Boundary Faces and
Boundary Connections for
simple example.

PassiveVarList ALL Array, dimensioned by the
number of variables, of 4 byte
integer values specifying the
active/passive nature of each
variable. A value of 0 indicates
the associated variable is active
while a value of 1 indicates that
it is passive. If all variables are
active, you may pass NULL
rather than an array of zeroes.
Refer to [introduction/best-
practices/passive-variables] for
additional information.

ValueLocation ALL The location of each variable in
the data set. ValueLocation(I)
indicates the location of variable
I for this zone. 0=cell-centered,
1=node-centered. Pass null to
indicate that all variables are
node-centered.

72



Parameter Applies to Zone Type(s) Notes

ShareVarFromZone ALL Indicates variable sharing. Array,
dimensioned by the number of
variables. ShareVarFromZone(I)
indicates the zone number with
which variable I will be shared.
This reduces the amount of data
to be passed via TECDAT142. A
value of 0 indicates that the
variable is not shared. Pass null
to indicate no variable sharing
for this zone. You must pass null
for the first zone in a data set
(there is no data available to
share).

ShareConnectivityFromZone ALL Indicates the zone number with
which connectivity is shared.
Pass 0 to indicate no connectivity
sharing. You must pass 0 for the
first zone in a data set.
NOTE: Connectivity and/or face
neighbors cannot be shared
when the face neighbor mode is
set to Global. Connectivity
cannot be shared between cell-
based and face-based finite
element zones.

1 Cell-based finite element zones: FELINESEG, FETRIANGLE, FEQUADRILATERAL, FETETRAHEDRON,
and FEBRICK.
2 Face-based finite element zones: FEPOLYGON and FEPOLYHEDRON. For these consider using
TECPOLYZNE142 instead.

Examples:

Refer to the following examples for illustrations of working with TECZNE142:

• Face Neighbors

• Writing to Multiple Binary Data Files

• Polygonal Example

• Multiple Polyhedral Zones

• Multiple Polygonal Zones

73



• Polyhedral Example

• Partitioned Data Examples

TECZNEFEMIXED142

Writes header information about the next zone to be added to the data file. TECZNEFEMIXED142
specifies that the next zone is a finite element zone with one or more linear or high order sections. A
mixed element zone can have between 1 and 16 sections. All cells within a section have the same cell
type, grid order, and basis function. The cell types of all sections within a zone must have the same
spatial dimensionality, or in other words, all sections of a zone must either be all line, surface, or
volume cell types. When using TecIO-MPI, TECZNEFEMIXED142 should be immediately followed by a
call to TECZNEMAP142. After TECZNEFEMIXED142 and TECZNEMAP142 are called, you must call TECDAT142
one or more times and then TECNOD142 (after calling TECDAT142).

FORTRAN Syntax:

 INTEGER*4 FUNCTION TECZNEFEMIXED142(ZoneTitle,
&                                    NumNodes,
&                                    NumSections,
&                                    CellShapePerSection,
&                                    GridOrderPerSection,
&                                    BasisFnPerSection,
&                                    NumElementsPerSection,
&                                    SolutionTime,
&                                    StrandID,
&                                    NumFaceConnections,
&                                    FaceNeighborMode,
&                                    PassiveVarList,
&                                    ValueLocation,
&                                    ShareVarFromZone,
&                                    ShareConnectivityFromZone)
 CHARACTER*(*)                       ZoneTitle
 INTEGER*8                           NumNodes
 INTEGER*4                           NumSections
 INTEGER*4                           CellShapePerSection
 INTEGER*4                           GridOrderPerSection
 INTEGER*4                           BasisFnPerSection
 INTEGER*8                           NumElementsPerSection
 DOUBLE PRECISION                    SolutionTime
 INTEGER*4                           StrandID
 INTEGER*4                           NumFaceConnections
 INTEGER*4                           FaceNeighborMode
 INTEGER*4                           PassiveVarList
 INTEGER*4                           ValueLocation
 INTEGER*4                           ShareVarFromZone

74



 INTEGER*4                           ShareConnectivityFromZone

C Syntax:

#include "TECIO.h"
INTEGER4 TECZNEFEMIXED142(char const*  ZoneTitle,
                          INTEGER8 const* NumNodes,
                          INTEGER4 const* NumSections,
                          INTEGER4 const* CellShapePerSection,
                          INTEGER4 const* GridOrderPerSection,
                          INTEGER4 const* BasisFnPerSection,
                          INTEGER8 const* NumElementsPerSection,
                          double  const* SolutionTime,
                          INTEGER4 const* StrandID,
                          INTEGER4 const* NumFaceConnections,
                          INTEGER4 const* FaceNeighborMode,
                          INTEGER4 const* PassiveVarList,
                          INTEGER4 const* ValueLocation,
                          INTEGER4 const* ShareVarFromZone,
                          INTEGER4 const* ShareConnectivityFromZone)

Return Value

0 if successful, -1 if unsuccessful.

Parameters

Parameter Description

ZoneTitle The title of the zone. Must be null-terminated.

NumNodes Total number of nodes for the zone.

NumSections Number of FE mixed element sections for the zone. Must be between 1 and 16,
inclusive.

CellShapePerSe
ction

Array containing the cell shape for each section. Must be between 0 and 6, inclusive.

0=FECellShape_Bar
1=FECellShape_Triangle
2=FECellShape_Quadrilateral
3=FECellShape_Tetrahedron

4=FECellShape_Hexahedron
5=FECellShape_Pyramid
6=FECellShape_Prism

GridOrderPerSe
ction

Array containing the grid order for each section. Grid orders must be between 1 and
4, inclusive.

BasisFnPerSecti
on

Array containing the basis function for each section. Must be 0 for each section.

75



Parameter Description

SolutionTime Scalar double precision value specifying the time associated with the zone. Refer to
User’s Manual for additional information on working with transient data.

StrandID Scalar integer value specifying the strand to which the zone is associated.

0 = static zone, not associated with a strand.
Values greater than 0 indicate a zone is assigned to a given strand.

Refer to User’s Manual for additional information on strands.

If you are converting your function calls from function calls 109 or older, use "0" for
StrandID.

NumFaceConne
ctions

The number of face connections that will be passed in routine TECFACE142.

FaceNeighborM
ode

The type of face connections that will be passed in routine TECFACE142.

0=LocalOneToOne 
1=LocalOneToMany

2=GlobalOneToOne
3=GlobalOneToMany

PassiveVarList Array, dimensioned by the number of variables, of 4 byte integer values specifying
the active/passive nature of each variable. A value of 0 indicates the associated
variable is active while a value of 1 indicates that it is passive. If all variables are
active, you may pass NULL rather than an array of zeroes. Refer to
[introduction/best-practices/passive-variables] for additional information.

ValueLocation The location of each variable in the data set. ValueLocation(I) indicates the location
of variable I for this zone. 0=cell-centered, 1=node-centered. Pass null to indicate that
all variables are node-centered.

ShareVarFromZ
one

Indicates variable sharing. Array, dimensioned by the number of variables.
ShareVarFromZone(I) indicates the zone number with which variable I will be
shared. This reduces the amount of data to be passed via TECDAT142. A value of 0
indicates that the variable is not shared. Pass null to indicate no variable sharing for
this zone. You must pass null for the first zone in a data set (there is no data
available to share).

ShareConnectiv
ityFromZone

Indicates the zone number with which connectivity is shared. Pass 0 to indicate no
connectivity sharing. You must pass 0 for the first zone in a data set. NOTE:
Connectivity and/or face neighbors cannot be shared when the face neighbor mode
is set to Global. Connectivity cannot be shared between cell-based and face-based
finite element zones.

TECZNEMAP142

When using TecIO-MPI, must be called immediately after calling TECZNE142, or TECZNEFEMIXED142 and
must be called by the main process and by each process that will write a zone to indicate which

76

360-users-manual.pdf
360-users-manual.pdf


processes will output each partition of the zone. A zone may be written in non-partitioned fashion
(that is, as in the standard TecIO library) by indicating that a single process will output it (npartitions
of 1, and a one-element ptnranks array). When outputting a partitioned zone, each rank outputting this
zone should then call TECFEPTN142 or TECIJKPTN142 followed by data output calls for each partition it will
output.

FORTRAN Syntax:

 INTEGER*4 FUNCTION TECZNEMAP142(npartitions, ptnranks)
 INTEGER*4          npartitions
 INTEGER*4          ptnranks

C Syntax:

#include TECIO.h
INTEGER4 TECZNEMAP142(INTEGER4 *npartitions,
                      INTEGER4 *ptnranks);

Return Value

0 if successful, nonzero if unsuccessful.

Parameters

Parameter Description

npartitions The number of partitions for this zone (1 for a non-partitioned zone).

ptnranks An array of MPI ranks (processes) that indicates the process that will output that
partition. The array may include the main process. For non-partitioned zones,
contains a single entry.

Defining Polyhedral and Polygonal Data
Polyhedral data is defined using TECPOLYZNE142 (or TECZNE142), TECPOLYFACE142, and
TECPOLYBCONN142. Via TECPOLYZNE142 the number of nodes, faces, elements, boundary faces, and
boundary connections are specified. TECPOLYFACE142 is used to specify the face mapping. If the zone
is connected to neighboring zones, TECPOLYBCONN142 is then used to specify those connections.

 Remember that Tecplot Focus cannot load face-based (polygonal or polyhedral) data.

Before defining your polyhedral or polygonal data, you should determine the numbering scheme for
the nodes, faces and elements in each zone of your data set. The numbering scheme is communicated
to Tecplot implicitly by the order in which you supply the data. For example, the first nodal value

77



supplied is for Node 1, followed by the value for Node 2, continuing to node N (where N is the total
number of nodes). Similarly, for faces and elements.

The remainder of this section provides simple examples illustrating how to define polygonal and
polyhedral data.

Boundary Faces and Boundary Connections

A "Connected Boundary Face" is a face with at least one neighboring element that belongs to another
zone. Each "Connected Boundary Face" has one or more "Boundary Connections". A "Boundary
Connection" is defined as the element-zone tuple used to identify the neighboring element when the
element is part of another zone.

Consider the following picture:

In the figure shown above, Zone 1 contains a single element (e1) and Zone 2 contains two elements (e1
and e2). The boundary faces and boundary connections for each zone are as follows:

Zone 1

In Zone 1, Face 1 (f1) is the sole connected boundary face. It has two boundary connections. The first
boundary connection is Element 1 in Zone 2. The second boundary connection is Element 2 in Zone
2.

• NumConnectedBoundaryFaces = 1

• TotalNumBndryConnections = 2

Zone 2

In Zone 2, both Face 1 and Face 2 are connected boundary faces. There is a total of two boundary
connections. The boundary connection for each boundary face in Zone 2 is Element 1 in Zone 1.

• NumConnectedBoundaryFaces = 2

• TotalNumBndryConnections = 2

78



FaceNodeCounts and FaceNodes

For illustration purposes, consider a zone composed of a single pyramidal element. The pyramid is
composed of five nodes and five faces.

Figure 11. A simple pyramid. The remaining triangular faces are Faces 2 and 3. The bottom rectangular face is
Face 5. Node 4 is obscured from view.

The FaceNodeCounts array is used to specify the number of nodes that compose each face. The values
in the array are arranged as follows:

FaceNodeCounts = [NumNodesInFace1,
                  NumNodesInFace2,
                  ...
                  NumNodesInFaceF]

where F is the total number of faces in the zone.

In this example, the FaceNodeCounts array is: [3 3 3 3 4]. The first four faces are composed of three
nodes and the last face is composed of four nodes.

The FaceNodes array is used to specify which nodes belong to which face. The array is dimensioned by
the total number of face nodes in the zone (specified via TECPOLYZNE142. The total number of face nodes
is defined as the sum of the number of nodes in each face.

The first K values in the FaceNodes array are the node numbers for Face 1, where K is the first value in
the FaceNodeCounts array. The next L values are the node numbers for Face 2, where L is the second
value in the FaceNodeCounts array.



When supplying the node numbers for each face, you must supply the numbers in
either a clockwise or counter-clockwise configuration around the face. Otherwise, the
faces will be contorted when the data is plotted.

It is not important to be consistent when choosing between clockwise or counter-
clockwise ordering. The key is to present the numbers consistently within the
numbering scheme. For example, you may present the node numbers for face 1 in a

79



clockwise order and the node numbers for the remaining faces in counter-clockwise
order.

Consider the pyramid used above. Using the FaceNodeCounts array we have already defined and the
figure, we can create the FaceNodes array for the pyramid.

FaceNodes = [1, 2, 3
             3, 2, 4,
             5, 2, 4,
             5, 1, 2,
             1, 5, 4, 3]

FaceRightElems and FaceLeftElems

After specifying the face map data (using the FaceNodeCounts and FaceNodes array), the next step is to
identify the element on either side of each face. To illustrate this, we will switch from the single
element zone to the following data set:

The neighboring elements can be determined using the right-hand rule:

2D Data

For each face, place your right-hand along the face with your fingers pointing in the direction of
incrementing node numbers (i.e. from Node 1 to Node 2). The right side of your hand will indicate
the right element, and the left side of your hand will indicate the left element.

3D Data

For each face, curl the fingers of your right-hand following the order that the nodes were presented
in the FaceNodes array. Your thumb will point to the right element. The left element is the other
adjacent element. If the face has more than one neighboring element on a single side, you will need
to use the FaceBoundaryConnectionCounts, FaceBoundaryConnectionElems and
FaceBoundaryConnectionZones array.

The neighboring elements for each face are stored in the FaceRightElems and FaceLeftElems array.

80



Each array is dimensioned by the total number of faces in the zone. The first value in each array is the
right or left neighboring element for Face 1, followed by the neighboring element for Face 2, and so
forth.

FaceRightElems = [RightNeighborToFace1,
                  RightNeighborToFace2,
                  ...
                  RightNeighborToFaceF]

FaceLeftElems = [LeftNeighborToFace1,
                 LeftNeighborToFace2,
                 ...
                 LeftNeighborToFaceF]

where F is the total number of faces

In the above plot, the face neighbors are as follows:

Face
Number

Right
Neigh
boring
Eleme
nt

Left
Neighboring
Element

Face 1 1 0

Face 2 1 0

Face 3 1 2

Face 4 1 3

Face 5 1 4

Face 6 1 0

Face 7 2 0

Face 8 2 0

Face 9 2 0

Face 10 2 3

Face 11 3 0

Face 12 3 4

Face 13 4 0

Face 14 4 0

81



Face
Number

Right
Neigh
boring
Eleme
nt

Left
Neighboring
Element

Face 15 4 0

The number zero is used to indicate that the face is on the edge of the data (i.e. has "no neighboring
element").

FaceBoundaryConnectionElements and Zones

When working with multiple zones, an additional aspect is folded into the FaceLeftElems and
FaceRightElems arrays. When the neighboring element is not within the current zone, you cannot
identify the element by its element number alone. Instead you need to specify both the element
number and its zone number. This is accomplished using the FaceBoundaryConnectionElements and
FaceBoundaryConnectionZones arrays. For each boundary connection, the element number of the
boundary connection is stored in the FaceBoundaryConnectionElements array while its zone number
is stored in the FaceBoundaryConnectionZones array.

A negative value in the FaceLeftElems or FaceRightElems array is used to indicate that the neighboring
element belongs to another zone. The magnitude of the negative number is a pointer to a value in the
FaceBoundaryConnectionElements and FaceBoundaryConnectionZones arrays. For example, given the
following FaceBoundaryConnectionElements and FaceBoundaryConnectionZones arrays:

FaceBoundaryConnectionElements = [ 1 1 3 4 ]

FaceBoundaryConnectionZones = [ 2 2 3 3 ]

A value of -4 in the FaceLeftElems indicates that the left neighboring element for that face is element
four in zone three.

Partially Obscured Boundary Faces

A face on the boundary of a zone may be partially obscured by its boundary connections (neighboring
elements). While Tecplot 360 does not draw fully obscured boundary faces (because it treats those
faces as internal faces), Tecplot 360 does draw partially obscured boundary faces. Thus, Tecplot 360
requires definition of partially obscured boundary faces.

To indicate a partially obscured face, indicate the appropriate neighboring element as zero in the
FaceBndryConnectionElems and FaceBndryConnectionZones arrays, followed by the actual
neighboring elements. When Tecplot 360 sees a list of neighboring elements for a boundary face that
begin with element zero, it marks that boundary face as partially obscured.

If Tecplot 360 sees a zero in FaceBndryConnectionElems that is not the first boundary element listed
for a face, an error message will appear, indicating that either the partially obscured boundary face

82



was not indicated correctly, or FaceBndryConnectionsElems and/or FaceBndryConnectionsZones was
not completely filled out.

Examples
Source code for example programs that use the TecIO library is provided with your Tecplot 360
installation in the util/tecio/examples folder in the installation directory. See the readme.txt file in that
folder for additional information on building the examples.

The examples (written in C) provide a basic illustration of creating a *.plt file using the TecIO library.
If you plan to compile the examples, be sure to review the instructions in Linking with the TecIO
Library first.

In order to keep the examples as simple as possible, error checking is not included. For complete
details on the parameters used and the function syntax for each TecIO function, refer to Binary Data
File Function Reference. When creating a binary data file using the TecIO library, the functions must
be called in a specific order. Refer to Binary Data File Function Calling Sequence for details.

Face Neighbors

This example illustrates how to (1) create two simple FE-quadrilateral zones and (2) create a face
neighbor connection between the two zones. In order to keep the example as simple as possible, error
checking is not included. If you plan to compile this example, be sure to include TECIO.h.

For complete details on the parameters used and the function syntax for each TecIO function, refer to
Binary Data File Function Reference. When creating a binary data file using the TecIO library, the
functions must be called in a specific order. Refer to Binary Data File Function Calling Sequence for
details.

Step 1  Initialize the data file using TECINI

TECINI is required for all data files. It is used to open the data file and initialize the file header
information (name the data file, the variables for the data file, and the file type).

INTEGER4 Debug  = 1;
INTEGER4 VIsDouble  = 0;
INTEGER4 FileType  = 0;
INTEGER4 FileFormat = 0; // 0 == PLT, 1 == SZPLT
INTEGER4 I  = 0;  /* Used to track return codes */

I = TECINI142((char*)"Face Neighbors Example", /* Specifies the name
                                                * of the entire
                                                * dataset
                                                */
              (char*)"X Y P",                  /* Defines the
                                                * variables for the

83



                                                * data file.  Each
                                                * zone must contain
                                                * each of the vars
                                                * listed.  The order
                                                * of the variables in
                                                * the list is used to
                                                * define the variable
                                                * number (e.g. X is
                                                * Var 1.)
                                                */
              (char*)"FaceNeighbors.plt",      /* Specifies the
                                                * file name.
                                                */
              (char*)".",
              &FileFormat,
              &FileType,                       /* The FileType is set to
                                                * zero, indicating it is
                                                * a full file containing
                                                * both grid and solution
                                                * data).
                                                */
              &Debug,
              &VIsDouble);

Step 2  Create Zone 1

After TECINI is called, call `TECZNE to create one or more zones for your data file.

INTEGER4 ZoneType  = 3;  /* set the zone type to
                          * FEQuadrilateral
                          */
INTEGER4 NumPts    = 6;
INTEGER4 NumElems  = 2;
INTEGER4 NumFaces  = 8;
INTEGER4 ICellMax  = 0;  /* not used */
INTEGER4 JCellMax  = 0;  /* not used */
INTEGER4 KCellMax  = 0;  /* not used */
double  SolTime    = 360.0;
INTEGER4 StrandID  = 0;  /* StaticZone */
INTEGER4 unused    = 0;  // ParentZone is no longer used
INTEGER4 IsBlock   = 1;  /* Block */
INTEGER4 NFConns   = 1;  /* Specify the number of Face
                          * Neighbor Connections in the
                          * Zone.  When this value is
                          * greater than zero, TECFACE must
                          * be called prior to creating the

84



                          * next zone or ending the file.
                          */

/* Specify the Face Neighbor Mode.
 * A value of 2 indicated that the face neighbor mode is global
 * one-to-one.  The scope of the face neighbors (local or
 * global) is with respect to the zones. A value of global
 * indicates that the face neighbor(s) is/are shared aross zones;
 * a value of local indicates that the face neighbor(s) are
 * shared within the current zone.  The terms one-to-one and
 * one-to-many are used to indicate whether the face in question
 * is shared with one cell or several cells.
 * For example, if your data is arranged as follows:
 *
 *             +-----+-----+-----+
 *             |     |     |     |
 *             |  1  |  2  |  3  |
 *             |     |     |     |
 *             +-----+-----+-----+
 *             |     |           |
 *             |  4  |     5     |
 *             |     |           |
 *             +-----+-----------+
 *
 * The face between 1 & 4 is local-one-to-one. The face between
 * 5 and (2 & 3) is local one-to-many.
 */

INTEGER4 FNMode  = 2;
INTEGER4 TotalNumFaceNodes  = 1;           /* Not used for FEQuad zones*/
INTEGER4 NumConnectedBoundaryFaces  = 1;   /* Not used for FEQuad zones*/
INTEGER4 TotalNumBoundaryConnections  = 1; /* Not used for FEQuad zones*/
INTEGER4 ShrConn  = 0;

INTEGER4 ValueLocation[3] = {1, 1, 1};  /* Specify the variable
                                         * values at the nodes.
                                         * NOTE:  Because all of
                                         * the variables are
                                         * defined at the nodes,
                                         * we can just pass
                                         * NULL for this array.
                                         * We are providing the
                                         * array for illustration
                                         * purposes.
                                         */

I = TECZNE142((char*)"Zone 1",
              &ZoneType,

85



              &NumPts,
              &NumElems,
              &NumFaces,
              &ICellMax,
              &JCellMax,
              &KCellMax,
              &SolTime,
              &StrandID,
              &unused,
              &IsBlock,
              &NFConns,
              &FNMode,
              &TotalNumFaceNodes,
              &NumConnectedBoundaryFaces,
              &TotalNumBoundaryConnections,
              NULL,
              ValueLocation,
              NULL,
              &ShrConn);

Step 3  Define the node numbering for Zone 1

For this example, we will create 2 rectangular cells in Zone 1. Before defining your variables, you must
establish a consistent node numbering scheme for your data. Once the node numbers are defined,
supply the variable values in the node numbering order. In this example, Node 1 is defined at X = 0
and Y = 0. As such, the first value supplied for X (i.e. X[0]) is 0. Similarly, the first value supplied for Y is
0.


It is important that you refer to node numbers consistently. The node numbers will be
used later to define the connectivity for each element.

For this example, we will create two quadrilateral elements. The node numbering for the elements is
defined in the following picture.

86



Step 4  Set up the variable values

The variable values will be written to the file using TECDAT. Because we are specifying nodal variables
(as specified via the ValueLocation parameter in TECZNE), each variable is dimensioned by the number
of points (NumPts) in the Zone. You have the option to specify some variables with nodal values and
some with cell-centered values. Refer to TECZNE142 or TECZNEFEMIXED142 for details.

float *X = new float[NumPts];
float *Y = new float[NumPts];
float *P = new float[NumPts];

/* For this example, we will create 2 rectangular cells in Zone
 * 1.  Before defining your variables, you must establish a
 * consistent node numbering scheme for your data.  Once the
 * node numbers are defined, supply the variable values in the
 * node numbering order.  In this example, node 1 is defined at
 * X = 0 and Y = 0.  As such, the first value supplied for X
 * (i.e. X[0]) is 0.  Similarly, the first value supplied for Y
 * is 0.
 *
 * It is important that you refer to node numbers consistently.
 * The node numbers will be used later to define the
 * connectivity for each element.
 */

X[0] = 0;
X[1] = 0;
X[2] = 1;
X[3] = 1;
X[4] = 2;
X[5] = 2;

Y[0] = 0;
Y[1] = 1;
Y[2] = 0;
Y[3] = 1;
Y[4] = 0;
Y[5] = 1;

for (INTEGER4 ii = 0; ii < NumPts; ii++)
 P[ii] = (float)(NumPts - ii);

INTEGER4 DIsDouble =  0;  /* Set DIsDouble to zero to use
                           * variables in float format.
                           */

/* Call TECDAT once for each variable */

87



I  = TECDAT142(&NumPts, &X[0], &DIsDouble);
I  = TECDAT142(&NumPts, &Y[0], &DIsDouble);
I  = TECDAT142(&NumPts, &P[0], &DIsDouble);

Step 5  Define the connectivity list for Zone 1

The Connectivity List is used to specify the nodes that compose each element. When working with
nodal variables, the numbering of the nodes is implicitly defined when the variables are declared. The
first value of each variable is for node one, the second value for node two, and so on.

Because this zone contains two quadrilateral elements, we must supply 8 values in the connectivity list.
The first four values define the nodes that form Element 1. Similarly, the second four values define the
nodes that form Element 2.

INTEGER4 ConnList[8] = {1, 3, 4, 2,
                        3, 5, 6, 4 };
I  = TECNOD142(ConnList);



It is important to provide the node list in either a clockwise or counter-clockwise
order. Otherwise, your elements will be misshapen. For example, if the first two
numbers in the above connectivity list were switched, the zone would appear as
follows:

Step 6  Define the face neighbor connections for Zone 1

Now that TECNOD or TECNODE has been called, the creation of Zone 1 is complete. However, in this
example, we will define a face neighbor between Zone 1 and Zone 2 (to be created later in the
example). Face Neighbor connections are used to define connections that are not created via the
connectivity list. For example, local face neighbors may need to be defined when a zone wraps onto
itself and global face neighbors may need to be defined to smooth edges across zones. Face Neighbors
are used when deriving variables and drawing contours.

In this example, we are creating a face neighbor connection between Cell 2 in Zone 1 and Cell 1 in Zone
2. The information required when specifying face neighbors depends upon the type of connection.
Refer to TECFACE142 for details.

88



In this case, we must supply the following information (in the order provided):

• the cell number in the current zone that contains the face neighbor

• the number of the face in that cell that contains the face neighbor

• the number of the other zone to which the face is connected

• the number of the cell in the other zone to which the face is connected

In this example, Face 2 in Cell 2 in the current zone is connected to Cell 1 in Zone 2.

INTEGER4 FaceConn[4] = {2, 2, 2, 1};
I  = TECFACE142(FaceConn);

Step 7  Create Zone 2

The creation of Zone 1 is complete. We are ready to create Zone 2. For simplicity, Zone 2 is a copy of
Zone 1 shifted along the X-axis. As such, many of the variables used to create Zone 1 are re-used here.

/* Call TECZNE to create Zone 2 */
I = TECZNE142((char*)"Zone 2",
              &ZoneType,
              &NumPts,
              &NumElems,
              &NumFaces,
              &ICellMax,
              &JCellMax,
              &KCellMax,
              &SolTime,
              &StrandID,
              &unused,
              &IsBlock,
              &NFConns,
              &FNMode,
              &TotalNumFaceNodes,
              &NumConnectedBoundaryFaces,
              &TotalNumBoundaryConnections,
              NULL,

89



              ValueLocation,
              NULL,
              &ShrConn);

Step 8   Define the variables for Zone 2

Because Zone 2 is a copy of Zone 1, shifted along the X-axis, we can share the Y variable definition used
to Zone. We will also create a second pressure variable for Zone 2 (P2).

float *X2 = new float[NumPts];
float *P2 = new float[NumPts];

for (INTEGER4 ii = 0; ii < NumPts; ii++)
{
 X2[ii] = X[ii] + 2;
 P2[ii] = 2 * (float)ii;
}

I  = TECDAT142(&NumPts, &X2[0], &DIsDouble);
I  = TECDAT142(&NumPts, &Y[0], &DIsDouble);
I  = TECDAT142(&NumPts, &P2[0], &DIsDouble);

delete X;
delete Y;
delete P;
delete X2;
delete P2;

Step 9  Define the connectivity list for Zone 2

As with Zone 1, we must define the connectivity list for Zone 2. Because, the node numbering restarts
at one for each new zone and the nodal arrangement is identical between the two zones, we may reuse
the connectivity list from Zone 1.

I  = TECNOD142(ConnList);

Step 10  Define the face neighbor connections for Zone 2

We will now specify the face neighbor connection with respect to our new current zone of Zone 2.

90



INTEGER4 FaceConn2[4] = {1, 4, 1, 2};  /* cell 1, face 4 in
                                        * current zone is a
                                        * neighbor to cell 2 in
                                        * zone 1.
                                        */
I  = TECFACE142(FaceConn2);

Step 11  Close the file

Call TECEND to close the file.

I = TECEND142();

Summary

When the preceding code is compiled and built, the data file will look as follows (with the Mesh and
Edge layers turned-on):

With the Mesh layer deactivated, the data set will look as follows:

91



If we had not included face neighbor connections, an Edge line would be drawn in between the two
zones.

Polygonal Example

The following example (written in C++) illustrates how to create a single octagonal cell using the TecIO
library.

In order to keep the example as simple as possible, error checking is not included. If you plan to
compile this example, be sure to include TECIO.h.

For complete details on the parameters used and the function syntax for each TecIO function, refer to
Binary Data File Function Reference. When creating a binary data file using the TecIO library, the
functions must be called in a specific order. Refer to Binary Data File Function Calling Sequence for
details.

 Remember that Tecplot Focus cannot load face-based (polygonal or polyhedral) data.

Step 1  Initialize the data file using TECINI

TECINI is required for all data files. It is used to: open the data file and initialize the file header
information (name the data file, the variables for the data file, and the file type).

INTEGER4 Debug  = 1;
INTEGER4 VIsDouble  = 0;
INTEGER4 FileType  = 0;
INTEGER4 FileFormat = 0; // 0 == PLT, 1 == SZPLT; Only PLT is currently
                         // supported for polygonal zones.
INTEGER4 I;              // used to check return codes

/*
 * Open the file and write the Tecplot datafile
 * header information
 */

I = TECINI142((char*)"Octagon",

92



              (char*)"X Y P",  /* Defines the variables for the data
                                * file. Each zone must contain each
                                * of the vars listed here. The order
                                * of the variables in the list is
                                * used to define the variable number
                                * (e.g. X is Variable 1). When
                                * referring to variables in other
                                * TecIO functions, you will refer to
                                * thevariable by its number.
                                */
              (char*)"octagon.plt",
              (char*)".",       /* scratch directory */
              &FileFormat,
              &FileType,
              &Debug,
              &VIsDouble);

Step 2  Create Zone 1

After TECINI is called, call TECPOLYZNE to create one or more zones for your data file.

/* In this example, we will create a single octagonal cell in
 * Tecplot 360’s polyhedral file format.
 */
INTEGER4 ZoneType  = 6;  /* FEPolygon */
INTEGER4 NumNodes  = 8;  /* Number of nodes in the octagon.*/
INTEGER4 NumElems  = 1;  /* Number of octagonal elements. */
INTEGER8 NumFaces  = 8;  /* Number of faces in the octagon.*/
double  SolTime    = 360.0;
INTEGER4 StrandID  = 0;  /* Static Zone */
INTEGER4 unused  = 0;  // ParentZone is no longer used

/* For polygonal zones, the total number of face nodes is equal
 * to twice the number of nodes.  This is because, each face
 * has exactly two nodes.
 */
INTEGER8 NumFaceNodes  = 2 * NumNodes;
/* Boundary Faces and Boundary Connections are not used in this
 * example.
 */
INTEGER4 NumBFaces  = 0;
INTEGER4 NumBConnections = 0;

INTEGER4 ShrConn  = 0;

93



I = TECPOLYZNE142((char*)"Octagonal Zone",
                   &ZoneType,
                   &NumNodes,
                   &NumElems,
                   &NumFaces,
                   &NumFaceNodes,
                   &SolTime,
                   &StrandID,
                   &unused,
                   &NumBFaces,
                   &NumBConnections,
                   NULL,
                   NULL,  /* When Value Location is not specified,
                           * Tecplot will treat all variables as
                           * nodal variables.
                           */
                   NULL,
                   &ShrConn);

Step 3  Define node numbering

For this example, we will create a single octagonal cell. Before defining your variables, you must
establish a consistent node numbering scheme for your data. Once the node numbers are defined,
supply the variable values in the node numbering order. In this example, Node 1 is defined at X = .25
and Y = 0. As such, the first value supplied for X (i.e. X[0]) is .25. Similarly, the first value supplied for Y
is 0.

It is important that you refer to node numbers consistently. The node numbers will be used later to
define the connectivity for each element.

94



Step 4  Set up the variable values

Write the variable values to the file using TECDAT. Because we are specifying nodal variables (as
specified via the ValueLocation parameter in TECPOLYZNE), each variable is dimensioned by the number
of points (NumPts) in the Zone. You have the option to specify some variables with nodal values and
some with cell-centered values. Refer to TECPOLYZNE142 for details.

The order of the values supplied for each nodal variable is determined by the node numbering
established in Step 3. The first value for each variable is for Node 1, the second value for each variable
is for Node 2 and so forth.

V1 = {ValueAtNode1, ValueAtNode2, …, ValueAtNodeN}

where N is the total number of nodes

float *X = new float[NumNodes];
float *Y = new float[NumNodes];
float *P = new float[NumNodes];

//Define the grid values.
X[0] = 0.25;
Y[0] = 0.0;

X[1] = 0.75;
Y[1] = 0.0;

X[2] = 1.0;
Y[2] = 0.25;

X[3] = 1.0;
Y[3] = 0.75;

X[4] = 0.75;
Y[4] = 1.0;

X[5] = 0.25;
Y[5] = 1.0;

X[6] = 0.0;
Y[6] = 0.75;

X[7] = 0.0;
Y[7] = 0.25;

for (INTEGER4 ii = 0; ii < 8; ii++)
 P[ii] = .5;

/* Write out the field data using TECDAT */

95



INTEGER4 DIsDouble = 0;  /* set IsDouble to 0 to use float
                          * variables. */

I  = TECDAT142(&NumNodes,  X,  &DIsDouble);
I  = TECDAT142(&NumNodes,  Y,  &DIsDouble);
I  = TECDAT142(&NumNodes,  P,  &DIsDouble);

delete X;
delete Y;
delete P;

Step 5  Define the Face Nodes

The FaceNodes array is used to indicate which nodes define which face. As mentioned earlier, the
number of the nodes is implicitly defined by the order in which the nodal data is provided. The first
value of each nodal variable describes Node 1, the second value describes Node 2, and so on.

The face numbering is also implicitly defined. Because there are two nodes in each face of any
polygonal zone, the first two nodes provided define Face 1, the next two define Face 2 and so on. If
there was a variable number of nodes used to define the faces, the array would be more complicated.
Refer to Multiple Polygonal Zones for an example.

The following picture describes the face numbering for this example:

As you can see, Face 1 is defined by Nodes 1 and 2, Face 2 is defined by Nodes 2 and 3, and so forth.
Because of this simple arrangement, we can use a for-loop to define all but the end points of the face
nodes array.

INTEGER4 *FaceNodes = new INTEGER4[NumFaceNodes];

96



/*
 * Loop over number of sides, and set each side to two
 * consecutive nodes.
 */
for (INTEGER4 ii = 0; ii < 8; ii++)
{
  FaceNodes[2*ii] = ii + 1;
  FaceNodes[2*ii+1] = ii + 2;
}
FaceNodes[15] = 1;

Step 6  Define the right and left elements of each face

The last step for writing out the polygonal data is to define the right and left neighboring elements for
each face. The neighboring elements can be determined using the right-hand rule. For each face, place
your right-hand along the face with your fingers pointing the direction of incrementing node numbers
(i.e. from Node 1 to Node 2). The right side of your hand will indicate the right element, and the left
side of your hand will indicate the left element. Refer to FaceRightElems and FaceLeftElems for details.

The number zero is used to indicate that there isn’t an element on that side of the face (i.e. the face is
on the edge of the data set). This is referred to as "no neighboring element".

Because of the way we numbered the nodes and faces, the right element for every face is the element
itself (Element 1) and the left element is "no-neighboring element" (Element 0).

INTEGER4 *FaceLeftElems  = new INTEGER4[NumFaces];
INTEGER4 *FaceRightElems = new INTEGER4[NumFaces];

for (INTEGER8 ii = 0; ii < NumFaces; ii++)
{
 FaceLeftElems[ii]  = 0;
 FaceRightElems[ii]  = 1;
}

Step 7  Write the face nodes to the file

We can now call TECPOLYFACE142 to write the face nodes to the file. Since we do not have any boundary
connections in this data set, there is no need to call TECPOLYBCONN142.

INTEGER4 NumFaces32 = (INTEGER4)NumFaces;
I = TECPOLYFACE142(&NumFaces32,
                   NULL,
                   FaceNodes,
                   FaceLeftElems,
                   FaceRightElems);

97



delete FaceNodes;
delete FaceLeftElems;
delete FaceRightElems;

Step 8  Close the file

Call TECEND to close the file.

I = TECEND142();

Multiple Polyhedral Zones

The following example demonstrates how to create two polyhedral zones, a rectangular solid and a
prism. The resulting image is a three-dimensional arrow (shown below).

This example covers the following topics: polyhedral data, working with multiple zones, and specifying
partially obscured faces. In order to keep the example as simple as possible, error checking is not
included. If you plan to compile this example, be sure to include: TECIO.h.

For complete details on the parameters used and the function syntax for each TecIO function, refer to
Binary Data File Function Reference. When creating a binary data file using the TecIO library, the
functions must be called in a specific order. Refer to Binary Data File Function Calling Sequence for
details.

 Remember that Tecplot Focus cannot load face-based (polygonal or polyhedral) data.

Step 1  Initialize the data file using TECINI

TECINI is required for all data files. This function opens the data file and initializes the file header
information (names the data file, the variables for the data file, and the file type).

INTEGER4 Debug  = 1;
INTEGER4 VIsDouble = 1;
INTEGER4 FileFormat = 0; // 0 == PLT, 1 == SZPLT; Only PLT is currently
                         // supported for ployhedral zones

98



INTEGER4 FileType  = 0;
INTEGER4 I;

/* Open the file and write the Tecplot datafile
 * header information
 */
I = TECINI142((char*)"Multiple polyhedral zones", /* Name of the entire
                                                   * dataset.
                                                   */
              (char*)"X Y Z P",  /* Defines the variables for the data
                                  * file. Each zone must contain each of
                                  * the variables listed here. The order
                                  * of the variables in the list is used
                                  * to define the variable number (e.g.
                                  * X is Var 1).
                                  */
              (char*)"Arrow.plt",
              (char*)".",         /* Scratch Directory */
              &FileFormat,
              &FileType,
              &Debug,
              &VIsDouble);

Step 2  Create Zone 1 (rectangle)

After TECINI is called, call TECPOLYZNE to create one or more zones for your data file. In this example,
Zone 1 contains a single rectangular solid created as a face-based finite element (i.e. polyhedral zone).
The zone has eight points (or nodes), six faces and one element.

/* TECPOLYZNE Parameters */
INTEGER4 ZoneType       = 7; /* sets the zone type to polyhedral */
INTEGER4 NumPts_Rect    = 8;
INTEGER4 NumElems_Rect  = 1;
INTEGER8 NumFaces_Rect  = 6;
double  SolutionTime    = 0.0;
INTEGER4 StrandID       = 0;
INTEGER4 Unused         = 0; // ParentZone is no longer sed
INTEGER4 SharConn       = 0;

99



/* In a rectangular solid, each face is composed of four nodes.
 * As such, the total number of face nodes is twenty-four (four
 * nodes for each of the six faces).
 */
INTEGER8 TotalNumFaceNodes_Rect  = 24;

/* There is one connected boundary face in this zone (the face on
 * the rectangle adjacent to the arrowhead). Refer to the Data
 * Format Guide for additional information. */
INTEGER4 NumConnBndryFaces_Rect  = 1;

/* The connected boundary face has one connection, the face on
 * the bottom of the arrowhead. A connection is an element-zone
 * tuple that indicates a neighboring element (and its zone) when
 * the neighboring element is in a different zone. Generally,
 * there will be one boundary connection for each boundary face.
 */
INTEGER4 TotalNumBndryConns_Rect  = 1;

/* For illustrative purposes, the grid variables (X, Y, and Z)
 * are nodal variables (i.e. ValueLocation = 1), and the pressure
 * variable (P) is a cell-centered variable (i.e.
 * ValueLocation = 0).
 */
INTEGER4 ValueLocation[4] = { 1, 1, 1, 0 };

I = TECPOLYZNE142((char*)"Zone 1: Rectangular Solid",
                  &ZoneType,
                  &NumPts_Rect,
                  &NumElems_Rect,
                  &NumFaces_Rect,
                  &TotalNumFaceNodes_Rect,
                  &SolutionTime,
                  &StrandID,
                  &Unused,
                  &NumConnBndryFaces_Rect,
                  &TotalNumBndryConns_Rect,
                  NULL,
                  ValueLocation,
                  NULL,
                  &SharConn);

Step 3   Set variable values for Zone 1 (rectangle)

Now that the zone has been created, write the variable values to the file by calling TECDAT. While there
are more elegant ways to define the grid coordinates for the rectangle, the values are defined explicitly

100



for simplicity.

Using the picture below, define the variable values.

For nodal variables, provide the values for each variable in nodal order. Similarly, for cell-centered
values, provide the variable values in cell order. The location of each variable is specified with
TECPOLYZNE.

//set variable values (X_Rect, Y_Rect, Z_Rect & P_Rect)
double *X_Rect = new double[NumPts_Rect];
double *Y_Rect = new double[NumPts_Rect];
double *Z_Rect = new double[NumPts_Rect];
double *P_Rect = new double[NumElems_Rect];

for (INTEGER4 ii = 0; ii <= NumPts_Rect / 2; ii += 4)
{
    X_Rect[ii]   = 0;
    X_Rect[ii+1] = 3;
    X_Rect[ii+2] = 3;
    X_Rect[ii+3] = 0;

    Y_Rect[ii]   = 3;
    Y_Rect[ii+1] = 3;
    Y_Rect[ii+2] = 1;
    Y_Rect[ii+3] = 1;
}

for (INTEGER4 ii = 0; ii < 4; ii++)
    Z_Rect[ii] = 0;

for (INTEGER4 ii = 4; ii < NumPts_Rect; ii++)
    Z_Rect[ii] = -2;

P_Rect[0] = 10;

101



INTEGER4 IsDouble = 1;
I = TECDAT142(&NumPts_Rect,  X_Rect, &IsDouble);
I = TECDAT142(&NumPts_Rect,  Y_Rect, &IsDouble);
I = TECDAT142(&NumPts_Rect,  Z_Rect, &IsDouble);
I = TECDAT142(&NumElems_Rect, P_Rect, &IsDouble);

Step 4  Define the facemap data for Zone 1

Using the following figure, specify which nodes define which face.

Figure 12. Zone 2 of the sample data. Node 7 is obscured from view and located in the back-left hand corner.
Face 6 is the bottom face. Face 3 is opposite Face 1 and Face 4 is opposite Face 2.

In order to specify the face map data, you must first specify how many nodes are in each face using the
FaceNodeCounts array. After defining the FaceNodeCounts array, use the FaceNodes array to identify
the nodes that compose each face. Refer to FaceNodeCounts and FaceNodes for additional information.

/* The FaceNodeCounts array is used to describe the number of
 * nodes in each face of the zone. The first value in the array
 * is the number of nodes in Face 1, the second value is the
 * number of nodes in Face 2 and so forth. In this example, each
 * face of the zone has four nodes.
 */

INTEGER4 *FaceNodeCounts_Rect = new INTEGER4[NumFaces_Rect];
//For this particular zone, each face has the 4 nodes
for (INTEGER4 ii = 0; ii < NumFaces_Rect; ii++)
   FaceNodeCounts_Rect[ii] = 4;

/* The FaceNodes array is used to specify the nodes that compose
 * each face.  For each face (n of N), the number of nodes used
 * to define the face is specified by the nth value in the
 * FaceNodeCounts array. For example, if the first value in the
 * FaceNodeCounts array is 4 (indicating Face 1 is composed of
 * four nodes), the first four values in the FaceNodes array are
 * the node numbers of the nodes in Face 1.
 *
 * ------------

102



 * WARNING
 * When providing the node numbers for each face, you must
 * provide the node numbers in a consistent order (either
 * clockwise or counter-clockwise. Providing the node numbers
 * out of order results in contorted faces.
 * ------------
 */

INTEGER4 *FaceNodes_Rect  = new INTEGER4[TotalNumFaceNodes_Rect];

//Nodes for Face 1
FaceNodes_Rect[0]  = 1;
FaceNodes_Rect[1]  = 2;
FaceNodes_Rect[2]  = 3;
FaceNodes_Rect[3]  = 4;

//Nodes for Face 2
FaceNodes_Rect[4]  = 1;
FaceNodes_Rect[5]  = 4;
FaceNodes_Rect[6]  = 8;
FaceNodes_Rect[7]  = 5;

//Nodes for Face 3
FaceNodes_Rect[8]  = 5;
FaceNodes_Rect[9]  = 8;
FaceNodes_Rect[10]  = 7;
FaceNodes_Rect[11]  = 6;

//Nodes for Face 4
FaceNodes_Rect[12]  = 2;
FaceNodes_Rect[13]  = 6;
FaceNodes_Rect[14]  = 7;
FaceNodes_Rect[15]  = 3;

//Nodes for Face 5
FaceNodes_Rect[16]  = 6;
FaceNodes_Rect[17]  = 2;
FaceNodes_Rect[18]  = 1;
FaceNodes_Rect[19]  = 5;

//Nodes for Face 6
FaceNodes_Rect[20]  = 3;
FaceNodes_Rect[21]  = 7;
FaceNodes_Rect[22]  = 8;
FaceNodes_Rect[23]  = 4;

 When providing the node numbers for each face, you must provide the node numbers

103



in a consistent order (either clockwise or counter-clockwise. Providing the node
numbers out of order results in contorted faces.

Step 5  Specify the neighboring elements for Zone 1

The next step for writing out the polyhedral data is to define the right and left neighboring elements
for each face. The neighboring elements can be determined using the right-hand rule. For each face,
place your right-hand along the face with your fingers pointing the direction of incrementing node
numbers (i.e. from Node 1 to Node 2). The right side of your hand will indicate the right element, and
the left side of your hand will indicate the left element. Refer to FaceRightElems and FaceLeftElems for
details.

The number zero is used to indicate that there isn’t an element on that side of the face. A negative
number is used when the neighboring element is in another zone. The value of the negative number
along with the FaceBndryConnectionCounts array points to the position in the
FaceBoundaryConnectionElems and FaceBoundaryConnectionZones arrays that defines the element
and zone numbers of the neighboring element. Refer to Step 6 for details.

Because of the way we numbered the nodes and faces, the right element for every face (except the face
connected to the arrowhead) is the element itself (Element 1) and the left element is "no-neighboring
element" (Element 0).

INTEGER4 *FaceLeftElems_Rect  = new INTEGER4[NumFaces_Rect];
INTEGER4 *FaceRightElems_Rect = new INTEGER4[NumFaces_Rect];

/* Since this zone has just one element, all leftelems are
 * NoNeighboring Element and all right elems are itself
 */
for (INTEGER4 ii = 0; ii < NumFaces_Rect; ii++)
{
    FaceRightElems_Rect[ii] = 1;
    FaceLeftElems_Rect[ii]  = 0;
}

/* The negative value in the FaceLeftElems array indicates that
 * the face is connected to an element in another zone. In this
 * case, Face 4 is connected to a face in Zone 2 (to be defined
 * later in the example). The FaceBoundaryConnectionElems array
 * lists all of the element numbers in other zones that the
 * current zone shares boundary connections with. Similarly, the
 * FaceBoundaryConnectionZones array lists all of the zone numbers
 * with which the current zone shares boundaries.  A negative
 * value in the FaceLeftElems or FaceRightElems array indicates
 * the position within these arrays that defines the neighboring
 * element and zone for a face.
 *

104



 * For example, if the FaceBoundaryConnectionElems array is:
 * [1 8 2] and the FaceBoundaryConnectionZones array is: [2 5 3],
 * a FaceLeftElems or FaceRightElems value of -2 indicates that
 * the face in question has a boundary connection with Element 8
 * in Zone 5.
 */
FaceLeftElems_Rect[3]  = -1;

INTEGER4 NumFaces_Rect32 = (INTEGER4)NumFaces_Rect;
I = TECPOLYFACE142(&NumFaces_Rect32,
                   FaceNodeCounts_Rect,
                   FaceNodes_Rect,
                   FaceLeftElems_Rect,
                   FaceRightElems_Rect);

After defining the face nodes, we call TECPOLYFACE to write it to the file.

Step 6 Define boundary connections for Zone 1

The last step for defining the rectangular solid is to describe the boundary connections and call
TECPOLYBCONN.

/* The FaceBndryConnectionCounts array is used to define the
 * number of boundary connections for each face that has a
 * boundary connection. For example, if a zone has three boundary
 * connections in total (NumConnectedBoundaryFaces), two of those
 * boundary connections are in one face, and the remaining
 * boundary connection is in a second face, the
 * FaceBndryConnectionCounts array would be: [2 1].
 * In this example, the total number of connected boundary faces
 * (specified via TECPOLYZNE) is equal to one, so the
 * FaceBoundaryConnectionCounts array contains a single value (1).
 */
INTEGER4 *FaceBndryConnCounts_Rect = new
INTEGER4[NumConnBndryFaces_Rect];
FaceBndryConnCounts_Rect[0] = 1;

/* The value(s) in the FaceBndryConnectionElems and
* FaceBndryConnectionZones arrays specify the element number and
* zone number, respectively, that a given boundary connection is
* connected to. In this case, the boundary connection face is
* connected to Element 1 in Zone 2.
*/
INTEGER4 *FaceBndryConnElems_Rect = new INTEGER4[TotalNumBndryConns_Rect];
INTEGER4 *FaceBndryConnZones_Rect = new INTEGER4[TotalNumBndryConns_Rect];

105



FaceBndryConnElems_Rect[0]  = 1;
FaceBndryConnZones_Rect[0]  = 2;

I = TECPOLYBCONN142(&NumConnBndryFaces_Rect,
                    FaceBndryConnCounts_Rect,
                    FaceBndryConnElems_Rect,
                    FaceBndryConnZones_Rect);

/* cleanup */
delete X_Rect;
delete Y_Rect;
delete Z_Rect;
delete P_Rect;
delete FaceNodeCounts_Rect;
delete FaceNodes_Rect;
delete FaceLeftElems_Rect;
delete FaceRightElems_Rect;
delete FaceBndryConnCounts_Rect;
delete FaceBndryConnElems_Rect;
delete FaceBndryConnZones_Rect;

Step 7   Create Zone 2

The data for Zone 1 has been written to the data file, so we are ready to create Zone 2. For simplicity,
we will reuse many of the variables from creating multi-poly data that are not relevant to this tutorial.

Zone 2 (the arrowhead or prism) has a single element composed of six nodes and five faces.

//TECPOLYZNE Parameters
INTEGER4 NumPts_Prism    = 6;
INTEGER4 NumElems_Prism  = 1;
INTEGER8 NumFaces_Prism  = 5;

/* The prism is composed of two triangular faces and three
 * rectangular faces.  The total number of face nodes is the sum
 * of the nodes in each triangular face (2 times 3) and the nodes
 * in each rectangular face (3 times 4).
 */

106



INTEGER8 TotalNumFaceNodes_Prism  = 18;

/* As with Zone 1, Zone 2 has one connected boundary face, the
 * face that is connected to Zone 1.
 */
INTEGER4 NumConnBndryFaces_Prism  = 1;

/* In this case, we have set the total number of boundary
 * connections for the connected face to two. The first boundary
 * connection is the connection to Zone 1.  The second boundary
 * connection is used to indicate that the face is only partially
 * obscured by the face from Zone 1. If we omitted the second
 * boundary connection, the connected face of the prism would
 * disappear if the rectangular zone was deactivated.
 */
INTEGER4 TotalNumBndryConns_Prism = 2;

I = TECPOLYZNE142((char*)"Zone 2: Prism",
                  &ZoneType,
                  &NumPts_Prism,
                  &NumElems_Prism,
                  &NumFaces_Prism,
                  &TotalNumFaceNodes_Prism,
                  &SolutionTime,
                  &StrandID,
                  &Unused,
                  &NumConnBndryFaces_Prism,
                  &TotalNumBndryConns_Prism,
                  NULL,
                  ValueLocation,
                  NULL,
                  &SharConn);

Step 8  Specify the variable values for Zone 2

Now that the zone has been created, we must write the variable values to the file by calling TECDAT.
While there are more elegant ways to define the grid coordinates for the prism, the values are defined
explicitly in order to keep the example relatively simple.

Using the picture below, define the variable values.

107



double *X_Prism = new double[NumPts_Prism];
double *Y_Prism = new double[NumPts_Prism];
double *Z_Prism = new double[NumPts_Prism];

/* Set the X and Y variable values, one z-plane at a time */
double ZVal = 0;
for (INTEGER4 ii = 0; ii < 2; ii++)
{
   // triangle in Z=ZVal plane
    X_Prism[3*ii]  = 3;
    Y_Prism[3*ii]  = 4;
    Z_Prism[3*ii]  = ZVal;

    X_Prism[3*ii+1] = 7;
    Y_Prism[3*ii+1] = 2;
    Z_Prism[3*ii+1] = ZVal;

    X_Prism[3*ii+2] = 3;
    Y_Prism[3*ii+2] = 0;
    Z_Prism[3*ii+2] = ZVal;

    ZVal = ZVal - 2;
}

/* When we called TECPOLYZNE, we specified that the variable 4
 * (pressure) is cell-centered. As such, only NumElements number
 * of values needs to be written to the data file for the pressure
 * variable.
 */
double *P_Prism = new double[NumElems_Prism];
P_Prism[0] = 20;

I = TECDAT142(&NumPts_Prism,  X_Prism, &IsDouble);
I = TECDAT142(&NumPts_Prism,  Y_Prism, &IsDouble);
I = TECDAT142(&NumPts_Prism,  Z_Prism, &IsDouble);

108



I = TECDAT142(&NumElems_Prism, P_Prism, &IsDouble);

Step 9  Define the face map for the arrowhead

Before creating the data set, we have defined the node numbers, face numbers and element numbers.
Using the following figure, specify the nodes that define each face.

Figure 13. The arrowhead with three faces visible (Face 2, Face 3 and Face 5). The remaining rectangular face is
Face 1, and the remaining triangular face is Face 4).

The faces are created from the data file format using the FaceNodeCounts and FaceNodes array. The
FaceNodeCounts array specifies the number of nodes contained in each face. The first value in the
array is the number of nodes in Face 1, followed by the number of nodes in Face 2, and so forth. The
FaceNodes array lists the node numbers in each face. The FaceNodes array first lists all of the nodes in
Face 1, followed by all of the nodes in Face 2, and so forth.

In this example, Face 1 is composed of four nodes (Node 1, Node 3, Node 6 and Node 4). As such, the
first value in the FaceNodeCounts array is "4" and the first four values in the FaceNodes array are [1, 3,
6, 4].

INTEGER4 *FaceNodeCounts_Prism = new INTEGER4[NumFaces_Prism];
INTEGER4 *FaceNodes_Prism      = new INTEGER4[TotalNumFaceNodes_Prism];

/* Because of the way we chose to number our faces, the first
 * three faces are rectangular and the last two are triangular.
 * The numbering of the faces is arbitrary, but the faces must
 * be referred to consistently.
 */
for (INTEGER4 ii = 0; ii < 3; ii++)
    FaceNodeCounts_Prism[ii] = 4;

for (INTEGER4 ii = 3; ii < NumFaces_Prism; ii++)
    FaceNodeCounts_Prism[ii] = 3;

//Nodes for Face 1
FaceNodes_Prism[0]  = 1;

109



FaceNodes_Prism[1]  = 3;
FaceNodes_Prism[2]  = 6;
FaceNodes_Prism[3]  = 4;

//Nodes for Face 2
FaceNodes_Prism[4]  = 1;
FaceNodes_Prism[5]  = 4;
FaceNodes_Prism[6]  = 5;
FaceNodes_Prism[7]  = 2;

//Nodes for Face 3
FaceNodes_Prism[8]  = 3;
FaceNodes_Prism[9]  = 2;
FaceNodes_Prism[10]  = 5;
FaceNodes_Prism[11]  = 6;

//Nodes for Face 4
FaceNodes_Prism[12]  = 5;
FaceNodes_Prism[13]  = 4;
FaceNodes_Prism[14]  = 6;

//Nodes for Face 5
FaceNodes_Prism[15]  = 1;
FaceNodes_Prism[16]  = 2;
FaceNodes_Prism[17]  = 3;

Step 10  Specify the neighboring elements for Zone 2

Now that we have defined the nodes that compose each face, we must specify the element on either
side of each face. The neighboring elements can be determined using the right-hand rule. For each
face, place your right-hand along the face with your fingers pointing the direction of incrementing
node numbers (i.e. from Node 1 to Node 2). The right side of your hand will indicate the right element,
and the left side of your hand will indicate the left element. Refer to FaceRightElems and
FaceLeftElems for details.

The number zero is used to indicate that there isn’t an element on that side of the face. A negative
number is used when the neighboring element is in another zone. The value of the negative number
points to the position in the FaceBoundaryConnectionElems and FaceBoundaryConnectionZones
arrays that defines the element and zone numbers of the neighboring element. Refer to Step 11 for
details.

Because of the way we numbered the nodes and faces, the right element for every face (except the face
connected to the rectangular solid) is the element itself (Element 1) and the left element is "no-
neighboring element" (Element 0).

/* Since this zone has just one element, all leftelems are

110



 * NoNeighboring Element and all right elems are itself.
 */
INTEGER4 *FaceLeftElems_Prism  =  new INTEGER4[NumFaces_Prism];
INTEGER4 *FaceRightElems_Prism =  new INTEGER4[NumFaces_Prism];

for (INTEGER4 ii = 0; ii < NumFaces_Prism; ii++)
{
 FaceRightElems_Prism[ii] = 1;
 FaceLeftElems_Prism[ii]  = 0;
}

/* The negative value in the FaceLeftElems array indicates that
* the face is connected to an element in another zone. In this
* case, Face 1 is connected to a face in Zone 1 (as indicated in
* Line 6). The FaceBoundaryConnectionElems array lists all of
* the element numbers in other zones that the current zone shares
* boundary connections with. Similarly, the
* FaceBoundaryConnectionZones array lists all of the zone numbers
* with which the current zone shares boundaries.  A negative
* value in the FaceLeftElems or FaceRightElems array indicates
* the position within these arrays that defines the neighboring
* element and zone for a face.
*/
FaceLeftElems_Prism[0]  = -1;

INTEGER4 NumFaces_Prism32 = (INTEGER4)NumFaces_Prism;
I = TECPOLYFACE142(&NumFaces_Prism32,
                   FaceNodeCounts_Prism,
                   FaceNodes_Prism,
                   FaceLeftElems_Prism,
                   FaceRightElems_Prism);

Step 11 boundary connections for Zone 2

The last step for creating Zone 2 is to specify the boundary connections.

INTEGER4 *FaceBndryConnCounts_Prism = new INTEGER4[NumConnBndryFaces_Prism];
FaceBndryConnCounts_Prism[0] = 2;

INTEGER4 *FaceBndryConnElems_Prism = new INTEGER4[TotalNumBndryConns_Prism];
INTEGER4 *FaceBndryConnZones_Prism = new INTEGER4[TotalNumBndryConns_Prism];

/* As previously mentioned, a connected boundary face is a face
 * that has either multiple neighboring faces or neighbor(s) that
 * belong to another zone.  Those cases are sufficient when the
 * combination of all of the face neighbors completely cover the

111



 * face. However, there are some cases (such as the bottom of the
 * arrowhead) where the face is not completely covered by its
 * neighbors. In those cases the face is referred to as partially
 * obscured. A partially obscured face is indicated by
 * incrementing the value in TotalNumConnectedBoundaryFaces and
 * entering a value of 0 in both the FaceBndryConnectionElems and
 * FaceBoundaryConnectionZones arrays for the boundary connection
 * for the partially obscured face.
 */
FaceBndryConnElems_Prism[0]  = 0;
FaceBndryConnZones_Prism[0]  = 0;

/* Indicates that Face 1 is connected to Element 1 in Zone 1. */
FaceBndryConnElems_Prism[1]  = 1;
FaceBndryConnZones_Prism[1]  = 1;

I = TECPOLYBCONN142(&NumConnBndryFaces_Prism,
                    FaceBndryConnCounts_Prism,
                    FaceBndryConnElems_Prism,
                    FaceBndryConnZones_Prism);

/* cleanup */
delete X_Prism;
delete Y_Prism;
delete Z_Prism;
delete P_Prism;
delete FaceNodeCounts_Prism;
delete FaceNodes_Prism;
delete FaceLeftElems_Prism;
delete FaceRightElems_Prism;
delete FaceBndryConnCounts_Prism;
delete FaceBndryConnElems_Prism;
delete FaceBndryConnZones_Prism;

Step 12  Close the file

Call TECEND to close the file.

I = TECEND142();

Multiple Polygonal Zones

The following example demonstrates how to create multiple polygonal zones. The example covers:
creating a zone where each element contains a different number of nodes, boundary connections and
varying variable locations (cell-centered versus nodal).

112



The code in this example produces the following plot:

Before beginning to create a polyhedral data file, you should assign a number to each node, face,
element and zone. The numbering system is used to determine the order that the information is
supplied to Tecplot. You may assign any order you would like. However, once you have supplied
information to Tecplot, you cannot change the number configuration. For this example, we have
selected the numbering system shown below:

Zone 1 has a total of three elements, thirteen unique nodes and fifteen faces. Zone 2 has two elements,
twelve nodes and thirteen faces.

113



In order to keep the example as simple as possible, error checking is not included. If you plan to
compile this example, be sure to include: TECIO.h.

For complete details on the parameters used and the function syntax for each TecIO function, refer to
Binary Data File Function Reference. When creating a binary data file using the TecIO library, the
functions must be called in a specific order. Refer to Binary Data File Function Calling Sequence for
details.

Step 1  Initialize the Data File

The first step for creating a binary data file using the TecIO library is to initialize and open the data file
by calling TECINI

INTEGER4 I; /* use to check return values */

INTEGER4 Debug      = 1;
INTEGER4 VIsDouble  = 0;
INTEGER4 FileType   = 0;
INTEGER4 FileFormat = 0; // 0 == PLT, 1 == SZPLT

I = TECINI142((char*)"Example: Multiple polygonal zones",
              (char*)"X Y P",  /* Defines the variables for the data file.
                                * Each zone must contain each of the vars
                                * listed here. The order of the variables
                                * in the list is used to define the
                                * variable number (e.g. X is Variable).
                                * When referring to variables in other
                                * TecIO functions, you will refer to the
                                * variable by its number.
                                */
              (char*)"multiplepolygons-HexAndOct.plt",
              (char*)".",  /* scratch directory */
              &FileFormat,
              &FileType,
              &Debug,
              &VIsDouble);

Step 2 Create Zone 1 (3 Hexagons)

The first step toward creating Zone 1 is to call TECPOLYZNE. TECPOLYZNE is used to initialize the zone and
specify parameters that apply to the entire zone (e.g. number of nodes, number of elements and
variable location).

114



/* TECPOLYZNE Parameters */
INTEGER4 ZoneType             = 6;   /* FE Polygon */
INTEGER4 NumPts_Z1            = 13;  /* the number of unique
                                      * nodes in the zone.
                                      */
INTEGER4 NumElems_Z1  = 3;
INTEGER8 NumFaces_Z1          = 15;  /* the number of unique
                                      * faces in the zone.
                                      */
double  SolutionTime          = 0.0;
INTEGER4 StrandID             = 0;
INTEGER4 unused               = 0;  // ParentZone is no longer used
INTEGER4 SharConn             = 0;

INTEGER4 ValueLocation[3]     = { 1, 1, 0 };

/* For a polygonal zone, the total number of face nodes is
 * twice the total number of faces. This is because each face
 * is composed of exactly two nodes.
 */
INTEGER8 TotalNumFaceNodes_Z1  = 2 * NumFaces_Z1;

/* A boundary face is a face that is neighbored by an element
 * or elements in another zone or zone(s). In Zone 1, Face 9,
 * Face 10 and Face 12 have a neighbor in Zone 2. Therefore,
 * the total number of boundary faces is "3".

115



 */
INTEGER4 TotalNumBndryFaces_Z1 = 3;

/* Each boundary face has one or more boundary connections. A
 * boundary connection is defined as another element in another
 * zone. Face 9 has a boundary connection with Element 1 in
 * Zone 2. In this example, each boundary face is connected to
 * one other element, so the total number of boundary
 * connections is equivalent to the total number of boundary
 * faces (3).
 */
INTEGER4 TotalNumBndryConns_Z1 = 3;

I = TECPOLYZNE142((char*)"Zone 1: 3 Hexagons", /* Specifies the name of
                                                * the entire dataset.
                                                * When the file is loaded
                                                * into Tecplot, the value is
                                                * available via the Data
                                                * Set Info dialog.
                                                */
                   &ZoneType,
                   &NumPts_Z1,
                   &NumElems_Z1,
                   &NumFaces_Z1,
                   &TotalNumFaceNodes_Z1,
                   &SolutionTime,
                   &StrandID,
                   &unused,
                   &TotalNumBndryFaces_Z1,
                   &TotalNumBndryConns_Z1,
                   NULL,
                   ValueLocation,
                   NULL,
                   &SharConn);

Step 3  Specify the variable values for Zone 1

The variable values are written to the data file via the TECDAT function. For each variable you must
provide either a total number of values equivalent to NumPts (if the variables are nodal) or a total
number of values equivalent to NumElements (if the variables are cell-centered). The variable location
is specified by the VarLocation parameter in TECPOLYZNE. In this example, X and Y are nodal variables
and P is cell-centered.

The order in which the variable values must be provided is established by the numbering scheme
(specified at the beginning of the example). The first value for each nodal variable (X and Y)
corresponds to Node 1, the second value corresponds to Node 2 and so forth. The first value for the
cell-centered value is for Element 1, the second value is for the second element or cell and so forth.

116



In order for the example to be easily followed, the grid coordinates are explicitly defined. When
working with larger data sets, you will likely wish to use equations to define your coordinates. Refer to
the picture in Step 2 for the X and Y coordinate values for Zone 1.

/* TECDAT Parameters */
double *X_Z1 = new double[NumPts_Z1];
double *Y_Z1 = new double[NumPts_Z1];

X_Z1[0]  = 1;
Y_Z1[0]  = 6;

X_Z1[1]  = 2;
Y_Z1[1]  = 6;

X_Z1[2]  = 3;
Y_Z1[2]  = 5;

X_Z1[3]  = 2;
Y_Z1[3]  = 4;

X_Z1[4]  = 1;
Y_Z1[4]  = 4;

X_Z1[5]  = 0;
Y_Z1[5]  = 5;

X_Z1[6]  = 4;
Y_Z1[6]  = 5;

X_Z1[7]  = 5;
Y_Z1[7]  = 4;

X_Z1[8]  = 4;
Y_Z1[8]  = 3;

X_Z1[9]  = 3;
Y_Z1[9]  = 3;

X_Z1[10] = 2;
Y_Z1[10] = 2;

X_Z1[11] = 1;
Y_Z1[11] = 2;

X_Z1[12] = 0;
Y_Z1[12] = 3;

117



double *P_Z1 = new double[NumElems_Z1];
P_Z1[0] = 2;
P_Z1[1] = 4;
P_Z1[2] = 5;

INTEGER4  IsDouble = 1;
I = TECDAT142(&NumPts_Z1,  X_Z1, &IsDouble);
I = TECDAT142(&NumPts_Z1,  Y_Z1, &IsDouble);
I = TECDAT142(&NumElems_Z1, P_Z1, &IsDouble);
delete X_Z1;
delete Y_Z1;
delete P_Z1;

Step 4  Specify the face map data for Zone 1

Use the picture in Step 2 to specify the nodes that compose each face. The first two values in the face
node array define Face 1, the next two define Face 2, and so on.

/* TecPolyFace Parameters */

/* Create a FaceNodes array, dimensioned by the total number
 * of face nodes in the zone.
 */
INTEGER4 *FaceNodes_Z1 = new INTEGER4[TotalNumFaceNodes_Z1];

/* Face Nodes for Element 1 */
FaceNodes_Z1[0]  = 1;
FaceNodes_Z1[1]  = 2;

FaceNodes_Z1[2]  = 2;
FaceNodes_Z1[3]  = 3;

FaceNodes_Z1[4]  = 3;
FaceNodes_Z1[5]  = 4;

FaceNodes_Z1[6]  = 4;
FaceNodes_Z1[7]  = 5;

FaceNodes_Z1[8]  = 5;
FaceNodes_Z1[9]  = 6;

FaceNodes_Z1[10] = 6;
FaceNodes_Z1[11] = 1;

/* Face Nodes for Element 2 */
FaceNodes_Z1[12] = 3;

118



FaceNodes_Z1[13] = 7;

FaceNodes_Z1[14] = 7;
FaceNodes_Z1[15] = 8;

FaceNodes_Z1[16] = 8;
FaceNodes_Z1[17] = 9;

FaceNodes_Z1[18] = 9;
FaceNodes_Z1[19] = 10;

FaceNodes_Z1[20] = 10;
FaceNodes_Z1[21] = 4;

/* Face Nodes for Element 3 */
FaceNodes_Z1[22] = 10;
FaceNodes_Z1[23] = 11;

FaceNodes_Z1[24] = 11;
FaceNodes_Z1[25] = 12;

FaceNodes_Z1[26] = 12;
FaceNodes_Z1[27] = 13;

FaceNodes_Z1[28] = 13;
FaceNodes_Z1[29] = 5;

Step 5   Specify the neighboring elements for Zone 1

Now that we have defined the nodes that compose each face, we must specify the element on either
side of each face. The neighboring elements can be determined using the right-hand rule. For each
face, place your right-hand along the face with your fingers pointing the direction of incrementing
node numbers (i.e. from Node 1 to Node 2). The right side of your hand will indicate the right element,
and the left side of your hand will indicate the left element. Refer to FaceRightElems and
FaceLeftElems for details.

The number zero is used to indicate that there isn’t an element on that side of the face. A negative
number is used when the neighboring element is in another zone. The value of the negative number
points to the position in the FaceBoundaryConnectionElems and FaceBoundaryConnectionZones
arrays that defines the element and zone numbers of the neighboring element. Refer to Step 6 for
details.

Because of the way we numbered the nodes and faces, the right element for every face is the element
itself. The left element will either be: another element in the zone, "no neighboring element", or an
element in Zone 2. The term "no neighboring element" is used to describe a face that is on the edge of
the entire data set (not just the zone).

119



INTEGER4 *FaceLeftElems_Z1  = new INTEGER4[NumFaces_Z1];
INTEGER4 *FaceRightElems_Z1 = new INTEGER4[NumFaces_Z1];

/* Left Face Elems for Element 1 */
FaceLeftElems_Z1[0]  = 0;
FaceLeftElems_Z1[1]  = 0;
FaceLeftElems_Z1[2]  = 2;
FaceLeftElems_Z1[3]  = 3;
FaceLeftElems_Z1[4]  = 0;

/* Left Face Elems for Element 2 */
FaceLeftElems_Z1[5]  =  0;
FaceLeftElems_Z1[6]  =  0;
FaceLeftElems_Z1[7]  =  0;
FaceLeftElems_Z1[8]  = -1;
FaceLeftElems_Z1[9]  = -2;
FaceLeftElems_Z1[10] =  3;

/* Left Face Elems for Element 3 */
FaceLeftElems_Z1[11]  = -3;
FaceLeftElems_Z1[12]  =  0;
FaceLeftElems_Z1[13]  =  0;
FaceLeftElems_Z1[14]  =  0;

/* Set Right Face Elems.  Because of the way we numbered the
 * nodes and faces, the right element for every face is the
 * element itself.
 */
for (INTEGER4 ii = 0; ii < 6; ii++)
    FaceRightElems_Z1[ii] = 1;

for (INTEGER4 ii = 6; ii < 11; ii++)
    FaceRightElems_Z1[ii] = 2;

for (INTEGER4 ii = 11; ii <= 14; ii++)
    FaceRightElems_Z1[ii] = 3;

INTEGER4 NumFaces_Z132 = (INTEGER4)NumFaces_Z1;
I = TECPOLYFACE142(&NumFaces_Z132,
                   NULL,  /* Not used for polygon zones */
                   FaceNodes_Z1,
                   FaceLeftElems_Z1,
                   FaceRightElems_Z1);

delete FaceNodes_Z1;
delete FaceLeftElems_Z1;

120



delete FaceRightElems_Z1;

Step 6 Specify the boundary connections for Zone 1

The final step for creating Zone 1 is to define the boundary connections.

/* TecPolyBConn Parameters */

/* The FaceBndryConnectionCounts array is used to define the
 * number of boundary connections for each face that has a
 * boundary connection. For example, if a zone has three
 * boundary connections in total (NumConnectedBoundaryFaces),
 * two of those boundary connections are in one face, and the
 * remaining boundary connection is in a second face, the
 * FaceBndryConnectionCounts array would be: [2 1].
 *
 * In this example, the total number of connected boundary
 * faces (specified via TECPOLYZNE) is equal to three. Each
 * boundary face is connected to only one other element,
 * so the FaceBoundaryConnectionCounts array is (1, 1, 1).
 */
INTEGER4 FaceBndryConnectionCounts_Z1[3]  = {1, 1, 1};

/* The value(s) in the FaceBndryConnectionElems and
 * FaceBndryConnectionZones arrays specifies the element number
 * and zone number, respectively, that a given boundary
 * connection is connected to. In this case, the first
 * boundary connection face is connected to Element 1 in Zone 2
 * and the remaining connection is to Element 2 in Zone 2.
 */
INTEGER4 FaceBndryConnectionElems_Z1[3]  = {1, 2, 2};
INTEGER4 FaceBndryConnectionZones_Z1[3]  = {2, 2, 2};

I = TECPOLYBCONN142(&TotalNumBndryFaces_Z1,
                    FaceBndryConnectionCounts_Z1,
                    FaceBndryConnectionElems_Z1,
                    FaceBndryConnectionZones_Z1);

Step 7 Create Zone 2

Now that Zone 1 is complete, we are ready to begin creating Zone 2 by calling TECPOLYZNE. For
simplicity, we are reusing many of the variables that were defined for Zone 1.

121



INTEGER4 NumPts_Z2              = 12; /* number of unique
                                       * nodes in the zone
                                       */
INTEGER4 NumElems_Z2            = 2;
INTEGER8 NumFaces_Z2            = 13; /* number of unique
                                       * faces in the zone
                                       */
INTEGER4 NumFaceConnections_Z2  = 0;

/* In polygonal zones, each face has exactly two nodes */
INTEGER8 TotalNumFaceNodes_Z2   = NumFaces_Z2 * 2;

/* A boundary face is a face that is neighbored by an element or
 * elements from another zone or zone(s). In Zone 2, Face 6,
 * Face 7 and Face 13 have a neighbor in Zone 1. Therefore, the
 * total number of boundary faces is "3".
 */
INTEGER4 TotalNumBndryFaces_Z2  = 3;

/* Each boundary face has one or more boundary connections. In
 * this example, each boundary face is connected to one other
 * element (i.e. the number of boundary faces and the number of
 * boundary connections is one-to-one).
 */
INTEGER4 TotalNumBndryConns_Z2  = 3;

I = TECPOLYZNE142((char*)"Zone 2: 1 Hexagon and 1 Octagon",
                  &ZoneType,
                  &NumPts_Z2,
                  &NumElems_Z2,

122



                  &NumFaces_Z2,
                  &TotalNumFaceNodes_Z2,
                  &SolutionTime,
                  &StrandID,
                  &unused,
                  &TotalNumBndryFaces_Z2,
                  &TotalNumBndryConns_Z2,
                  NULL,
                  ValueLocation,
                  NULL,
                  &SharConn);

Step 8  Specify the variable values for Zone 2

The variable values are written to the data file via the TECDAT function. For each variable you must
provide either a total number of values equivalent to NumPts (if the variables are nodal) or equivalent
to NumElements (if the variables are cell-centered). The variable location is specified by the
VarLocation parameter in TECPOLYZNE. In this example, X and Y are nodal variables and P is cell-
centered.

The order in which the variable values must be provided is established by the numbering scheme
specified at the beginning of the example. The first value for each nodal variable (X and Y) corresponds
to Node 1, the second value corresponds to Node 2 and so forth. The first value for the cell-centered
value is for Element 1, the second value is for the second element or cell and so forth.

In order for the example to be easily followed, the grid coordinates are explicitly defined. When
working with larger data sets, you will likely wish to use equations to define your coordinates. Refer to
the picture in Step 7 for the X and Y coordinate values for Zone 2.

double *X_Z2 = new double[NumPts_Z2];
double *Y_Z2 = new double[NumPts_Z2];

X_Z2[0]  = 5;
Y_Z2[0]  = 4;

X_Z2[1]  = 6;
Y_Z2[1]  = 4;

X_Z2[2]  = 7;
Y_Z2[2]  = 3;

X_Z2[3]  = 6;
Y_Z2[3]  = 2;

X_Z2[4]  = 5;
Y_Z2[4]  = 2;

123



X_Z2[5]  = 4;
Y_Z2[5]  = 3;

X_Z2[6]  = 3;
Y_Z2[6]  = 3;

X_Z2[7]  = 5;
Y_Z2[7]  = 1;

X_Z2[8]  = 4;
Y_Z2[8]  = 0;

X_Z2[9]  = 3;
Y_Z2[9]  = 0;

X_Z2[10]  = 2;
Y_Z2[10]  = 1;

X_Z2[11]  = 2;
Y_Z2[11]  = 2;

/* In the call to TECPOLYZNE, P was set to a cell centered variable.
 * As such, only two values need to be defined.
 */
double  *P_Z2 = new double[NumPts_Z2];

P_Z2[0] = 8;
P_Z2[1] = 6;

I = TECDAT142(&NumPts_Z2,  X_Z2, &IsDouble);
I = TECDAT142(&NumPts_Z2,  Y_Z2, &IsDouble);
I = TECDAT142(&NumElems_Z2, P_Z2, &IsDouble);

delete X_Z2;
delete Y_Z2;
delete P_Z2;

Step 9  Specify the face map for Zone 2

Use the picture in Step 7 to specify which nodes compose which face. The first two values in the face
node array define Face 1, the next two define Face 2, and so on.

INTEGER4 *FaceNodes_Z2;
FaceNodes_Z2 = new INTEGER4[TotalNumFaceNodes_Z2];

124



/* Face Nodes for Element 1 */
FaceNodes_Z2[0]  = 1;
FaceNodes_Z2[1]  = 2;

FaceNodes_Z2[2]  = 2;
FaceNodes_Z2[3]  = 3;

FaceNodes_Z2[4]  = 3;
FaceNodes_Z2[5]  = 4;

FaceNodes_Z2[6]  = 4;
FaceNodes_Z2[7]  = 5;

FaceNodes_Z2[8]  = 5;
FaceNodes_Z2[9]  = 6;

FaceNodes_Z2[10] = 6;
FaceNodes_Z2[11] = 1;

/* Face Nodes for Element 2 */
FaceNodes_Z2[12] = 7;
FaceNodes_Z2[13] = 6;

FaceNodes_Z2[14] = 5;
FaceNodes_Z2[15] = 8;

FaceNodes_Z2[16] = 8;
FaceNodes_Z2[17] = 9;

FaceNodes_Z2[18] = 9;
FaceNodes_Z2[19] = 10;

FaceNodes_Z2[20] = 10;
FaceNodes_Z2[21] = 11;

FaceNodes_Z2[22] = 11;
FaceNodes_Z2[23] = 12;

FaceNodes_Z2[24] = 12;
FaceNodes_Z2[25] = 7;

Step 10   Specify the neighboring elements for Zone 2

Now that we have defined the nodes that compose each face, we must specify the element on either
side of each face. The neighboring elements can be determined using the right-hand rule. For each
face, place your right-hand along the face with your fingers pointing the direction of incrementing
node numbers (i.e. from Node 1 to Node 2). The right side of your hand will indicate the right element,

125



and the left side of your hand will indicate the left element. Refer to FaceRightElems and
FaceLeftElems for details.

The number zero is used to indicate that there isn’t an element on that side of the face. A negative
number is used when the neighboring element is in another zone. The value of the negative number
points to the position in the FaceBoundaryConnectionElems and FaceBoundaryConnectionZones
arrays that defines the element and zone numbers of the neighboring element. Refer to Step 11 for
details.

Because of the way we numbered the nodes and faces, the right element for every face is the element
itself. The left element will either be: another element in the zone, "no neighboring element", or an
element in Zone 2. The term "no neighboring element" is used to describe a face that is on the edge of
the entire data set (not just the zone).

/* Specify the right and left neighboring elements.
 * The neighboring elements can be determined using the
 * right-hand rule. For each face, place your right-hand along
 * the face with your fingers pointing the direction of
 * incrementing node numbers (i.e. from Node 1 to Node 2). The
 * right side of your hand will indicate the right element,
 * and the left side of your hand will indicate the left
 * element. A value of zero indicates that there is no
 * neighboring element on that side.  A negative value
 * indicates that the neighboring element is in another zone.
 * The number is a pointer into the FaceBndryConnectionElems
 * and FaceBndryConnectionZones arrays.
 */

INTEGER4 *FaceLeftElems_Z2  = new INTEGER4[NumFaces_Z2];
INTEGER4 *FaceRightElems_Z2 = new INTEGER4[NumFaces_Z2];

/* Left Face Elems for Element 1 */
FaceLeftElems_Z2[0]  =  0;
FaceLeftElems_Z2[1]  =  0;
FaceLeftElems_Z2[2]  =  0;
FaceLeftElems_Z2[3]  =  0;
FaceLeftElems_Z2[4]  =  2;
FaceLeftElems_Z2[5]  = -1;

/* Left Face Elems for Element 2 */
FaceLeftElems_Z2[6]  = -2;
FaceLeftElems_Z2[7]  =  0;
FaceLeftElems_Z2[8]  =  0;
FaceLeftElems_Z2[9]  =  0;
FaceLeftElems_Z2[10] =  0;
FaceLeftElems_Z2[11] =  0;
FaceLeftElems_Z2[12] = -3;

126



/* Set Right Face Elems.  Because of the way we numbered the
 * nodes and faces, the right element for every face is the
 * element itself. */
for (INTEGER4 ii = 0; ii < 6; ii++)
    FaceRightElems_Z2[ii]  = 1;

for (INTEGER4 ii = 6; ii < 13; ii++)
    FaceRightElems_Z2[ii]  = 2;

INTEGER4 NumFaces_Z232 = (INTEGER4)NumFaces_Z2;
I = TECPOLYFACE142(&NumFaces_Z232,
                   NULL,
                   FaceNodes_Z2,
                   FaceLeftElems_Z2,
                   FaceRightElems_Z2);

delete FaceNodes_Z2;
delete FaceLeftElems_Z2;
delete FaceRightElems_Z2;

Step 11 Specify the Boundary Connections for Zone 2

The final step for creating Zone 2 is to define the boundary connections

/* The FaceBndryConnectionCounts array is used to define the
 * number of boundary connections for each face that has a
 * boundary connection. In this example, the total number of
 * connected boundary faces (specified via TECPOLYZNE) is equal to
 * three. Each boundary face is connected to only one other
 * element, so the FaceBoundaryConnectionCounts array is
 * (1, 1, 1).
 */
INTEGER4 FaceBndryConnectionCounts_Z2[3]  = {1, 1, 1};

/* The value(s) in the FaceBndryConnectionElems and
 * FaceBndryConnectionZones arrays specifies that element
 * number and zone number, respectively, that a given boundary
 * connection is connected to. In this case, the first boundary
 * connection face is connected to Element 2 in Zone 1 and the
 * remaining connections are Element 3 in Zone 1.
 */
INTEGER4 FaceBndryConnectionElems_Z2[3]  = {2, 3, 3};
INTEGER4 FaceBndryConnectionZones_Z2[3]  = {1, 1, 1};

I = TECPOLYBCONN142(&TotalNumBndryFaces_Z2,

127



                    FaceBndryConnectionCounts_Z2,
                    FaceBndryConnectionElems_Z2,
                    FaceBndryConnectionZones_Z2);

Step 12  Close the file using TECEND

Call TECEND to close the file.

I = TECEND142();

Polyhedral Example

The following example (written in C) illustrates how to create a single polyhedral cell using the TecIO
library.

#include "TECIO.h"
#include "MASTER.h" /* for defintion of NULL */

int main()
{
 /* Call TECINI142 */
 INTEGER4 FileType   = 0;  /* 0 for full file  */
 INTEGER4 FileFormat = 0; // 0 == PLT, 1 == SZPLT; Only PLT is currently
                          // supported for polyhedral zones
 INTEGER4 Debug      = 0;
 INTEGER4 VIsDouble  = 1;
 INTEGER4 I          = 0;  /* use to check return codes */

 I = TECINI142((char*)"Pyramid",      /* Data Set Title  */
               (char*)"X Y Z",        /* Variable List  */
               (char*)"pyramid.plt",  /* File Name  */
               (char*)".",            /* Scratch Directory  */
               &FileFormat,
               &(FileType),
               &(Debug),
               &(VIsDouble));

 /* Call TECPOLYZNE142 */
 INTEGER4  ZoneType  = 7;  /* 7 for FEPolyhedron */
 INTEGER4  NumNodes  = 5;  /* number of unique nodes */
 INTEGER4  NumElems  = 1;  /* number of elements */
 INTEGER8  NumFaces  = 5;  /* number of unique faces */

 double  SolTime     = 12.65;  /* solution time  */
 INTEGER4  StrandID  = 0;      /* static zone  */

128



 INTEGER4  unused    = 0;      // ParentZone is no longer used

 INTEGER4 *PassiveVarArray = NULL;
 INTEGER4 *ValueLocArray   = NULL;
 INTEGER4 *VarShareArray   = NULL;
 INTEGER4  ShrConn         = 0;

 /* The number of face nodes in the zone.  This example creates
  * a zone with a single pyramidal cell.  This cell has four
  * triangular faces and one rectangular face, yielding a total
  * of 16 face nodes.
  */
 INTEGER8  NumFaceNodes  = 16;
 INTEGER4  NumBConns     = 0;  /* No Boundary Connections */
 INTEGER4  NumBItems     = 0;  /* No Boundary Items */

 I = TECPOLYZNE142((char*)"Polyhedral Zone (Octahedron)",
                    &ZoneType,
                    &NumNodes,
                    &NumElems,
                    &NumFaces,
                    &NumFaceNodes,
                    &SolTime,
                    &StrandID,
                    &unused,
                    &NumBConns,
                    &NumBItems,
                    PassiveVarArray,
                    ValueLocArray,
                    VarShareArray,
                    &ShrConn);

 /* Initialize arrays of nodal data */
 double *X = new double[NumNodes];
 double *Y = new double[NumNodes];
 double *Z = new double[NumNodes];

 X[0] = 0;
 Y[0] = 0;
 Z[0] = 0;

 X[1] = 1;
 Y[1] = 1;
 Z[1] = 2;

 X[2] = 2;
 Y[2] = 0;
 Z[2] = 0;

129



 X[3] = 2;
 Y[3] = 2;
 Z[3] = 0;

 X[4] = 0;
 Y[4] = 2;
 Z[4] = 0;

 /* Write the data (using TECDAT142) */
 INTEGER4 DIsDouble = 1;  /* One for double precision */
 I = TECDAT142(&NumNodes, X, &DIsDouble);
 I = TECDAT142(&NumNodes, Y, &DIsDouble);
 I = TECDAT142(&NumNodes, Z, &DIsDouble);

 delete X;
 delete Y;
 delete Z;

 /* Define the Face Nodes.
  *
  * The FaceNodes array is used to indicate which nodes define
  * which face. As mentioned earlier, the number of the nodes is
  * implicitly defined by the order in which the nodal data is
  * provided.  The first value of each nodal variable describes
  * node 1, the second value describes node 2, and so on.
  *
  * The face numbering is implicitly defined.  Because there are
  * two nodes in each face, the first two nodes provided define
  * face 1, the next two define face 2 and so on.  If there was
  * a variable number of nodes used to define the faces, the
  * array would be more complicated.
  */

 INTEGER4  *FaceNodeCounts = new INTEGER4[NumFaces];
 /* The first four faces are triangular, i.e. have three nodes.
  * The fifth face is rectangular, i.e. has four nodes. */
 FaceNodeCounts[0] = 3;
 FaceNodeCounts[1] = 3;
 FaceNodeCounts[2] = 3;
 FaceNodeCounts[3] = 3;
 FaceNodeCounts[4] = 4;

 INTEGER4  *FaceNodes = new INTEGER4[NumFaceNodes];
 /* Face Nodes for Face 1 */
 FaceNodes[0]  = 1;
 FaceNodes[1]  = 2;
 FaceNodes[2]  = 3;

130



 /* Face Nodes for Face 2 */
 FaceNodes[3]  = 3;
 FaceNodes[4]  = 2;
 FaceNodes[5]  = 4;

 /* Face Nodes for Face 3 */
 FaceNodes[6]  = 5;
 FaceNodes[7]  = 2;
 FaceNodes[8]  = 4;

 /* Face Nodes for Face 4 */
 FaceNodes[9]  = 1;
 FaceNodes[10] = 2;
 FaceNodes[11] = 5;

 /* Face Nodes for Face 5 */
 FaceNodes[12] = 1;
 FaceNodes[13] = 5;
 FaceNodes[14] = 4;
 FaceNodes[15] = 3;

 /* Define the right and left elements of each face.
  *
  * The last step for writing out the polyhedral data is to
  * define the right and left neighboring elements for each
  * face.  The neighboring elements can be determined using the
  * right-hand rule.  For each face, place your right-hand along
  * the face which your fingers pointing the direction of
  * incrementing node numbers (i.e. from node 1 to node 2).
  * Your right thumb will point towards the right element; the
  * element on the other side of your hand is the left element.
  *
  * The number zero is used to indicate that there isn’t an
  * element on that side of the face.
  *
  * Because of the way we numbered the nodes and faces, the
  * right element for every face is the element itself
  * (element 1) and the left element is "no-neighboring element"
  * (element 0).
  */

 INTEGER4  *FaceLeftElems  = new INTEGER4[NumFaces];
 FaceLeftElems[0]  = 1;
 FaceLeftElems[1]  = 1;
 FaceLeftElems[2]  = 0;
 FaceLeftElems[3]  = 0;
 FaceLeftElems[4]  = 0;

131



 INTEGER4  *FaceRightElems = new INTEGER4[NumFaces];
 FaceRightElems[0]  = 0;
 FaceRightElems[1]  = 0;
 FaceRightElems[2]  = 1;
 FaceRightElems[3]  = 1;
 FaceRightElems[4]  = 1;

 /* Write the face map (created above) using TECPOLYFACE142. */
 INTEGER4 NumFaces32 = (INTEGER4)NumFaces;
 I = TECPOLYFACE142(&NumFaces32,
 FaceNodeCounts,  /* The face node counts array */
 FaceNodes,       /* The face nodes array */
 FaceLeftElems,   /* The left elements array  */
 FaceRightElems); /* The right elements array  */

 delete FaceNodeCounts;
 delete FaceNodes;
 delete FaceLeftElems;
 delete FaceRightElems;

 I = TECEND142();
 return 0;
}

IJ-ordered zone

The following example illustrates how to create a simple IJ-ordered zone. TECZNE142 is called first to
initialize the zone.

// Internal testing flags
// RUNFLAGS:none
// RUNFLAGS:--szl

#include "TECIO.h"
#include "MASTER.h" /* for defintion of NULL */
#include <string.h>

int main(int argc, const char *argv[])
{
    INTEGER4 Debug      = 1;
    INTEGER4 VIsDouble  = 0;
    INTEGER4 FileType   = 0;
    INTEGER4 fileFormat; // 0 == PLT, 1 == SZPLT
    if (argc == 2 && strncmp(argv[1],"--szl",5) == 0)

132



       fileFormat = 1;
    else
       fileFormat = 0;

    INTEGER4 I  = 0; /* Used to track return codes */

    /*
     * Open the file and write the tecplot datafile
     * header information
     */
    I = TECINI142((char*)"IJ Ordered Zones", /* Name of the entire
                                              * dataset.
                                              */
                  (char*)"X Y P",  /* Defines the variables for the data
                                    * file. Each zone must contain each of
                                    * the variables listed here. The
                                    * order of the variables in the list is
                                    * used to define the variable number
                                    * e.g.  X is Var 1).
                                    */
                  (char*)"ij_ordered.plt",
                  (char*)".",  /* Scratch Directory */
                  &fileFormat,
                  &FileType,
                  &Debug,
                  &VIsDouble);

    float X1[4];
    float Y1[4];
    float P1[4];
    float X2[4];
    float Y2[4];
    float P2[4];

    INTEGER4 ICellMax  = 0;
    INTEGER4 JCellMax  = 0;
    INTEGER4 KCellMax  = 0;
    INTEGER4 DIsDouble  = 0;
    double  SolTime  = 360.0;
    INTEGER4 StrandID  = 0;  /* StaticZone */
    INTEGER4 unused  = 0;  // ParentZone is no onger used
    INTEGER4 IsBlock  = 1;  /* Block */
    INTEGER4 NFConns  = 0;
    INTEGER4 FNMode  = 0;
    INTEGER4 TotalNumFaceNodes  = 1;
    INTEGER4 TotalNumBndryFaces  = 1;
    INTEGER4 TotalNumBndryConnections = 1;
    INTEGER4 ShrConn  = 0;

133



    /*Ordered Zone Parameters*/
    INTEGER4 IMax = 2;
    INTEGER4 JMax = 2;
    INTEGER4 KMax = 1;

    X1[0] = .125;
    Y1[0] = .5;
    P1[0] = 5;

    X1[1] = .625;
    Y1[1] = .5;
    P1[1] = 7.5;

    X1[2] = .125;
    Y1[2] = .875;
    P1[2] = 10;

    X1[3] = .625;
    Y1[3] = .875;
    P1[3] = 7.5;

    X2[0] = .375;
    Y2[0] = .125;
    P2[0] = 5;

    X2[1] = .875;
    Y2[1] = .125;
    P2[1] = 7.5;

    X2[2] = .375;
    Y2[2] = .5;
    P2[2] = 10;

    X2[3] = .875;
    Y2[3] = .5;
    P2[3] = 7.5;

    /*  Ordered Zone */
    INTEGER4 ZoneType = 0;
    I = TECZNE142((char*)"Ordered Zone",
                   &ZoneType,
                   &IMax,
                   &JMax,
                   &KMax,
                   &ICellMax,
                   &JCellMax,
                   &KCellMax,

134



                   &SolTime,
                   &StrandID,
                   &unused,
                   &IsBlock,
                   &NFConns,
                   &FNMode,
                   &TotalNumFaceNodes,
                   &TotalNumBndryFaces,
                   &TotalNumBndryConnections,
                   NULL,
                   NULL,
                   NULL,
                   &ShrConn);
    INTEGER4 III = IMax * JMax * KMax;
    I  = TECDAT142(&III, X1, &DIsDouble);
    I  = TECDAT142(&III, Y1, &DIsDouble);
    I  = TECDAT142(&III, P1, &DIsDouble);

    I = TECZNE142((char*)"Ordered Zone2",
                   &ZoneType,
                   &IMax,
                   &JMax,
                   &KMax,
                   &ICellMax,
                   &JCellMax,
                   &KCellMax,
                   &SolTime,
                   &StrandID,
                   &unused,
                   &IsBlock,
                   &NFConns,
                   &FNMode,
                   &TotalNumFaceNodes,
                   &TotalNumBndryFaces,
                   &TotalNumBndryConnections,
                   NULL,
                   NULL,
                   NULL,
                   &ShrConn);

    I  = TECDAT142(&III, X2, &DIsDouble);
    I  = TECDAT142(&III, Y2, &DIsDouble);
    I  = TECDAT142(&III, P2, &DIsDouble);

    I = TECEND142();
    return 0;
}

135



Switching Between Two Files

In this simplified example, information is written to two separate files. First, one file is created and a
zone is written to the file. Then, a second file is created and a zone and auxiliary data are written to the
file. The second file is closed and the auxiliary data is written to the first file.

#include "TECIO.h"
#include "MASTER.h" /* for defintion of NULL */
#include <string.h>

int main(int argc, const char *argv[])
{
    /*
    * Open the file and write the tecplot datafile
    * header information
    */
    INTEGER4 Debug  = 1;
    INTEGER4 VIsDouble  = 0;
    INTEGER4 FileType  = 0;

    INTEGER4 fileFormat; // 0 == PLT, 1 == SZPLT
    if (argc == 2 && strncmp(argv[1],"--szl",5) == 0)
        fileFormat = 1;
    else
        fileFormat = 0;

    INTEGER4 I  = 0;  /* Used to check the return value */

    I = TECINI142((char*)"SIMPLE DATASET", /* Name of the entire dataset.*/

                  (char*)"X1 Y1 P1",  /* Defines the variables for the data
                                       * file. Each zone must contain each of
                                       * the variables listed here. The order
                                       * of the variables in the list is used
                                       * to define the variable number e.g.
                                       * X1 is Var 1).
                                       */
                  (char*)"multiplefiles-file1.plt",
                  (char*)".",  /* Scratch Directory */
                  &fileFormat,
                  &FileType,
                  &Debug,
                  &VIsDouble);

    /* Set the parameters for TecZne */
    INTEGER4 ZoneType           = 0; /* sets the zone type to ordered */
    INTEGER4 IMax               = 2; /* Create an IJ-ordered zone,

136



                                      * by using IMax and JMax
                                      * values that are greater
                                      * than one, and setting KMax
                                      * to one.  */
    INTEGER4 JMax               = 2;
    INTEGER4 KMax               = 1;

    double  SolTime             = 0;
    INTEGER4 StrandID           = 0; /* StaticZone */
    INTEGER4 unused             = 0; // ParentZone is no longer used

    INTEGER4 ICellMax           = 0; /* not used */
    INTEGER4 JCellMax           = 0; /* not used */
    INTEGER4 KCellMax           = 0; /* not used */

    INTEGER4 IsBlock            = 1; /* Block */

    INTEGER4 NFConns            = 0; /* this example does not use
                                      * face neighbors */
    INTEGER4 FNMode             = 0;
    INTEGER4 TotalNumFaceNodes  = 1;
    INTEGER4 TotalNumBndryFaces = 1;
    INTEGER4 TotalNumBndryConn  = 1;
    INTEGER4 ShrConn            = 0;

    /* Create an Ordered Zone */
    I = TECZNE142((char*)"Ordered Zone",
                  &ZoneType,
                  &IMax,
                  &JMax,
                  &KMax,
                  &ICellMax,
                  &JCellMax,
                  &KCellMax,
                  &SolTime,
                  &StrandID,
                  &unused,
                  &IsBlock,
                  &NFConns,
                  &FNMode,
                  &TotalNumFaceNodes,
                  &TotalNumBndryFaces,
                  &TotalNumBndryConn,
                  NULL,
                  NULL,
                  NULL,
                  &ShrConn);

137



    /* Set the variable values for the ordered zone. */
    float X1[4];
    float Y1[4];
    float P1[4];

    X1[0] = 0.125;
    Y1[0] = 0.5;
    P1[0] = 7.5;

    X1[1] = 0.625;
    Y1[1] = 0.5;
    P1[1] = 10.0;

    X1[2] = 0.125;
    Y1[2] = 0.875;
    P1[2] = 5.0;

    X1[3] = 0.625;
    Y1[3] = 0.875;
    P1[3] = 7.5;

    INTEGER4 DIsDouble  = 0;  /* set DIsDouble to 0, for float values. */

    INTEGER4 III = IMax * JMax * KMax;
    I  = TECDAT142(&III, X1, &DIsDouble);
    I  = TECDAT142(&III, Y1, &DIsDouble);
    I  = TECDAT142(&III, P1, &DIsDouble);

    /* Open a new data file.  note: the first file is still open
    * because TecEnd was not called.
    */
    I = TECINI142((char*)"Auxiliary Data",
                  (char*)"X1 Y1 P1",
                  (char*)"multiplefiles-file2.plt",
                  (char*)".",
                  &fileFormat,
                  &FileType,
                  &Debug,
                  &VIsDouble);

    /* Switch the active file to the newly created data file
     * (file2.plt) which is the second file opened with TECINI142
     * so we use 2.
     */
    INTEGER4 WhichFile = 2;
    I = TECFIL142(&WhichFile);

138



    /* Create a second zone, using many of the values from the first
     * zone, and write it to the second data file.
     */

    I = TECZNE142((char*)"Ordered Zone2",
                  &ZoneType,
                  &IMax,
                  &JMax,
                  &KMax,
                  &ICellMax,
                  &JCellMax,
                  &KCellMax,
                  &SolTime,
                  &StrandID,
                  &unused,
                  &IsBlock,
                  &NFConns,
                  &FNMode,
                  &TotalNumFaceNodes,
                  &TotalNumBndryFaces,
                  &TotalNumBndryConn,
                  NULL,
                  NULL,
                  NULL,
                  &ShrConn);
    /* set the variable values for the second zone */
    float X2[4];
    float Y2[4];
    float P2[4];

    X2[0] = 0.375;
    Y2[0] = 0.125;
    P2[0] = 5;

    X2[1] = 0.875;
    Y2[1] = 0.125;
    P2[1] = 7.5;

    X2[2] = 0.375;
    Y2[2] = 0.5;
    P2[2] = 10;

    Y2[3] = 0.5;
    X2[3] = 0.875;
    P2[3] = 7.5;

    III = IMax * JMax * KMax;
    I  = TECDAT142(&III, X2, &DIsDouble);

139



    I  = TECDAT142(&III, Y2, &DIsDouble);
    I  = TECDAT142(&III, P2, &DIsDouble);

    /* Switch to the first file. */
    WhichFile = 1;
    I = TECFIL142(&WhichFile);

    /* Create an auxiliary data value and write it to the file */
    char DeformationValue[128];
    strcpy(DeformationValue, "0.98");

    I = TECAUXSTR142((char*)"DeformationValue",
                     DeformationValue);
    /* Close the first file */
    I = TECEND142();

    /* The remaining file will become the active file.  As such,
     * TecFil does not need to be called again to close the second
     * file.
     */
    I = TECEND142();

    return 0;
}

Text Example

The following example creates a data file with a single text box reading "Sample Text".

#include "TECIO.h"
#include <string.h>

int main(int argc, const char *argv[])
{
    /* Open the file & write the datafile header information */
    INTEGER4 Debug  = 1;
    INTEGER4 VIsDouble = 0;

    INTEGER4 fileFormat; // 0 == PLT, 1 == SZPLT
    if (argc == 2 && strncmp(argv[1],"--szl",5) == 0)
        fileFormat = 1;
    else
        fileFormat = 0;

    INTEGER4 FileType  = 0;
    INTEGER4 I         = 0;  /* used to check the return value */

140



    I = TECINI142((char*)"Text",
                  (char*)"X Y P",
                  (char*)"text.plt",
                  (char*)".",
                  &fileFormat,
                  &FileType,
                  &Debug,
                  &VIsDouble);

    /* Specify the X, Y and Z position of the anchor point */
    double  XPos  = 0.0;
    double  YPos  = 1.0;
    double  ZPos  = 0.0; /* N/A for 2D text */

    INTEGER4 PosCoordMode  = 0;  /* use grid coordinates */

    /* opt not to attach the text to a given zone.  When text is
     * attached to a given zone, it is displayed only when the zone
     * is displayed.
     */
    INTEGER4 AttachToZone  = 0;
    INTEGER4 Zone          = 2;

    /* Specify the font values */
    INTEGER4 Font             = 1;  /* Helvetica Bold */
    INTEGER4 FontHeightUnits  = 2;  /* in grid coordinates */
    double  FontHeight        = 18;

    /* Set the box style parameters */
    INTEGER4 BoxType          = 1;  /* filled box */
    double  BoxMargin         = .5; /* margin between the text
                                     * and the text box */
    double  BoxLineThickness  = .1;
    INTEGER4 BoxColor         = 0;  /* set the box line color to black.*/
    INTEGER4 BoxFillColor     = 1;  /* set the box fill color to red.*/

    /* set the font properties */
    double  Angle             = 30; /* angle of the text */
    INTEGER4 Anchor           = 1;  /* set the anchor point to
                                     * the center of the text box.
                                     */
    double  LineSpacing       = 1.5;
    INTEGER4 TextColor        = 7;  /* set the font color to white /*

    INTEGER4 Scope            = 1;  /* set the text to "local",
                                     * i.e. available in the

141



                                     * current frame only. */
    INTEGER4 Clipping         = 1;

    char  Text[60];
    char  MFC[24];
    strcpy(Text, "Sample Text");
    strcpy(MFC, "My Macro");

    I = TECTXT142(&XPos,
                  &YPos,
                  &ZPos,
                  &PosCoordMode,
                  &AttachToZone,
                  &Zone,
                  &Font,
                  &FontHeightUnits,
                  &FontHeight,
                  &BoxType,
                  &BoxMargin,
                  &BoxLineThickness,
                  &BoxColor,
                  &BoxFillColor,
                  &Angle,
                  &Anchor,
                  &LineSpacing,
                  &TextColor,
                  &Scope,
                  &Clipping,
                  Text,
                  MFC);

    I = TECEND142();

    return 0;
}

Partitioned Data Examples

The brickpartitioned example supplied in the installation uses the partitioned data writing capability
of TecIO to write a FE brick zone in three partitions. It can be used either with the standard TecIO
library or with TecIO-MPI (by adding #define MPI 1 to the top of the file and running it using mpiexec).
Unlike the other examples, it is written in C++ (a FORTRAN 90 version is also provided). If you have
followed the other examples, then you will find the data-writing in this example to be straightforward,
and the unfamiliar code will be that dealing with the partition-related function calls: TECMPIINIT142,
TECZNEMAP142, and TECFEPTN142.

142



The following notes may help you find your way around:

• Add #define MPI 1 to the top of the file to use the MPI version, and link against libtecoimpi.dll,
libteciompi.so, or libteciompi.dylib as appropriate to your platform.

• In MPI mode, the MPI_COMM_WORLD communicator is used, and the main rank is designated as 0 (the
first rank), both of which should be typical.

• The zone is partitioned using pseudo-IJK indices. This is for demonstration purposes only; you will
likely need a different strategy in real solver code. The partitioning is defined (along with the data)
in the function createData.

The ijkpartitioned example in the installation writes IJK-indexed data using the TecIO-MPI API.
Similarly to the brickpartitioned example, the main additions are the partition-related calls:
TECMPIINIT142, TECZNEMAP142, and in this case TECIJKPTN142.

ASCII Data
Files exported into Tecplot’s data format may be either ASCII or binary. However, we strongly
recommend using Tecplot’s binary file format (*.plt). The ASCII file format is provided to illustrate how
data is structured in Tecplot. ASCII data format is useful only for very small data files. Reading an ASCII
data file into Tecplot 360 can be much slower than reading a binary data file, as binary data files are
structured for more efficient data access, and Tecplot 360 must convert from ASCII to binary prior to
loading the data. Refer to Binary Data for information on creating files in Tecplot’s binary format.

Converting ASCII to Binary
Tecplot 360 or Preplot can be used to convert ASCII data files to binary as part of a post-processing
step, before the data is presented for interactive visualization. See the User’s Manual for converting
with Tecplot 360, or ASCII Data File Conversion to Binary for converting with Preplot. A description of
the binary format is included in Binary Data File Format. If your data is generated in FORTRAN or C,
you may be able to generate binary data files directly using the utilities described in Binary Data.

Syntax Rules & Limits
An ASCII data file begins with a file header defining a title for the data file and/or the names of the
variables. The header is followed by zone records containing the plot data. Zone records may contain
ordered or finite element data. You may also include text, geometry, and custom-label records that
create text, geometries, and/or custom labels on plots. The records in the file may be in any order.

ASCII data files have the following limits:

Number of Records

Each data file may have ten custom label records, and any number of text and geometry records.

143

360-users-manual.pdf


Maximum Characters per Line

The maximum length of a line in a data file is 32,000 characters.

There are additional limits specific to some of the record types and parameters. These limits are
discussed in the section for the associated record type or parameter.

When writing an ASCII data file, please keep the following syntax rules in mind:

Character Strings

Double quotes must be used to enclose character strings with embedded blank spaces or other
special characters.

Multiple Lines

Any line may be continued onto one or more following lines (except for text enclosed in double
quotes ").

Escape Characters

A backslash \ may be used to remove the significance of (or escape) the next character (that is, \"
produces a single double-quote).

Comments

Any line beginning with an # is treated as a comment and ignored.

The following simple example of a Tecplot 360 ASCII data file has one small zone and a single line of
text:

TITLE="Simple Data File"
VARIABLES="X" "Y"
ZONE I=4 DATAPACKING=POINT
1 1
2 1
2 2
1 2
TEXT X=10 Y=90 T="Simple Text"

ASCII File Structure
An ASCII data file begins with an file header defining a title for the data file and or the names of the
variables. The header is followed by optional zone records containing the plot data. Zone records may
contain ordered or finite element data. Refer to the User’s Manual for a complete description of
ordered and finite element data. You may also include text, geometry, and custom-label records, in any
order.

The first line in a zone, text, geometry, custom label, data set auxiliary data record or variable auxiliary

144

360-users-manual.pdf


record begins with the keyword ZONE, TEXT, GEOMETRY, CUSTOMLABELS, DATASETAUXDATA, or VARAUXDATA.

The primary components of ASCII data files are:

• File Header

• Zone Record

• Text Record

• Geometry Record

• Custom Labels Record

• Data Set Auxiliary Data Record

• Variable Auxiliary Data Record

File Header

The File Header is an optional component of an ASCII data file. It may contain a TITLE, FILETYPE
and/or a VARIABLES list. If the file header occurs in a place other than at the top of the data file, a
warning is printed and the header is ignored. This allows you to concatenate two or more ASCII data
files before using Tecplot 360 (provided each data file has the same number of variables per data
point).

File Header Components

Token Syntax Notes

TITLE = "<string>" The title will be displayed in the headers of Tecplot 360 frames.

FILETYPE =FULL, GRID
or SOLUTION

Specifies the data file type. A full data file contains both grid and
solution data. If omitted, the FILETYPE will be treated as "FULL".

VARIABLES =
"VARNAME1"
, "
VARNAME2",
"VARNAME3"
, …,
"VARNAMEN
"

You may also assign a name to each of the variables by including a line
that begins with VARIABLES=, followed by each variable’s name
enclosed in double quotes. Tecplot 360 calculates the number of
variables (N) from the list of variable names. If you do not specify the
variable names (and your first zone has POINT data packing), Tecplot
360 sets the number of variables equal to the number of numeric values
in the first line of zone data for the first zone, and names the variables
V1, V2, V3, and so forth. Initially, Tecplot 360 uses the first two variables
in data files as the X- and Y-coordinates, and the third variable for the Z-
coordinate of 3D plots. However, you may order the variables in the
data file any way you want, since you can interactively reassign the
variables to the X-, Y-, and/or Z-axes via the Select Variables dialog
(accessed via Plot>Assign XYZ).

145



Example Grid File

The following example displays a very simple 2D grid file.

#"Grid" files look like standard Tecplot data files with no solution variables.
TITLE = "Example Grid File"
FILETYPE = GRID
VARIABLES = "X" "Y"
ZONE
I = 3, J = 3, K = 1
ZONETYPE = Ordered, DATAPACKING = BLOCK
0.0  0.5   1.0   0.0   0.5   1.0   0.0   0.5   1.0
0.0  0.0   0.0   0.5   0.5   0.5   1.0   1.0   1.0

Example Solution File

The following example displays a very simple solution file (to be used with the Example Grid File).

TITLE     = "Example Solution File"
FILETYPE  = SOLUTION
VARIABLES = "Pressure"
ZONE
I = 3, J = 3, K = 1
ZONETYPE = Ordered, DATAPACKING = BLOCK
2.0   2.0   2.0   0.0   0.0   0.0   2.0   2.0   2.0

Zone Record

A zone record consists of a control line that begins with the keyword ZONE, followed by the zone header,
followed by a set of numerical data called the zone data. The contents of the zone footer depend upon
the type of zone. Refer to the following table for an overview of the contents of a zone record.

Component Notes

ZONE The keyword "ZONE" is required at the start of every zone record

Zone Header The Zone Header is used to specify the type of data in the zone, the structure of the
data, the names of the variables in the zone, and more. Refer to Zone Header for
details.

Data The data section follows the zone header. The arrangement of the data is dependent
upon the values of DATA PACKING and VAR LOCATION (specified in the Zone
Header). Refer to Data for details.

146



Component Notes

Zone Footer The contents required for the Zone Footer depend upon the ZONETYPE (specified in
the Zone Header).

For ordered zones, the Zone Footer contains the Face Neighbor Connections List
information (if any).

For cell-based finite element zones (FETRIANGLE, FEQUADRILATERAL, FETETRAHEDRAL and
FEBRICK), the Zone Footer contains Connectivity information, followed by Face
Neighbor Connections List.

For face-based finite element zones (FEPOLYHEDRAL, FEPOLYGON), the Zone Footer
contains Facemap Data followed by Boundary Map Data. Remember that Tecplot
Focus cannot load this type of zone.

Refer to Zone Footer for additional information.

Zone Header

Keyword Syntax Required
(Y/N)

Default Notes

ZONE Y Keyword required to start a zone
record

T = <string> N Zone Title. This may be any text
string up to 128 characters in
length. If you supply a longer
text string, it is automatically
truncated to the first 128
characters. The titles of zones
appear in the Zone Style and
other dialogs, and, optionally, in
the XY- plot legend.

147



Keyword Syntax Required
(Y/N)

Default Notes

ZONETYPE = <zonetype> N ORDERED The zone data are of the type
specified by the ZONETYPE
parameter in the control line.
There are two basic types of
zones: ordered and finite
element. ORDERED is presumed if
the ZONETYPE parameter is
omitted. See Ordered Data for
more information on ordered
zones, and Finite Element Data
for details on finite element
data.

When specifying your ZoneType,
please note that Tecplot Focus
cannot read FEPOLYGON or
FEPOLYHEDRON zones.

I = <integer> Y Specify the maximum number of
points in the I- J- or K-direction.
Use only when ZONETYPE is
ORDERED.

J = <integer> Y

K = <integer> Y

NODES = <integer> Y Use for finite element zone types
only (that is, not ordered zones).
Specify the total number of
NODES and ELEMENTS in the
data file. Refer to Finite Element
Data for additional information.

ELEMENTS = <integer> Y

FACES = <integer> Y (for face-
based finite
element zones)

Use for face-based finite element
zones types (polygonal and
polyhedral) only. Specify the
number of FACES in the data file.
See Finite Element Data for more
information.

148



Keyword Syntax Required
(Y/N)

Default Notes

TOTALNUM
FACENODES

= <integer> Y (for
polyhedral
zones)

For face-based finite element
zones only. Total number of
nodes in the Facemap Data
section for all faces. This is
optional for polygons as
TotalNumFaceNodes =
2*NumFaces.

NUM
CONNECTED
BOUNDARY
FACES

= <integer> Y For face-based finite element
zones only. Total number of
boundary faces listed in the
Facemap Data section. Set to zero
if boundary faces aren’t used.

TOTALNUM
BOUNDARY
CONNECTIONS

= <integer> Y For face-based finite element
zones only. Total number of
entries for boundary items listed
in the Facemap Data section. Set
to zero if boundary faces aren’t
used.

FACENEIGH
BORMODE

= [LOCALONE
TOONE,

LOCALONE
TOMANY,

GLOBALONE
TOONE,

GLOBALONE
TOMANY]

N LOCAL
ONETOONE

For ordered or cell-based finite
element zones only. Used to
indicate whether the
neighboring faces are within the
current zone or in another zone
(i.e. local or global), as well as
whether the connections are
one-to-one or one-to-many.
When this token is used, both the
FACENEIGHBORCONNECTIONS
token and the FaceNeighbor
Connections List are required.
Refer to Face Neighbor
Connections List for details.

149



Keyword Syntax Required
(Y/N)

Default Notes

FACE
NEIGHBOR
CONNECTIONS

= <integer> Y, if FACE
NEIGHBOR
MODE, is in
use.

For ordered or cell-based finite
element zones only. Used to
indicate the total number of
connections for all elements in
the zone. For example, if you
have two cells with three
connections each, the number of
face neighbor connections is
equal to six. When this token is
used, both the
FACENEIGHBORMODE token and
the FaceNeighbor Connections
List are required. Refer to Face
Neighbor Connections List for
details.

DT = (<datatype>
for var1,
<datatype>
for var2 …,
<datatype>
for varn)

N SINGLE Each variable in each zone in the
data file may have its own data
type. The data type determines
the amount of storage Tecplot
360 assigns to each variable.
Therefore, the lowest level data
type should be used whenever
possible. For example, imaging
data, which usually consists of
numerical values ranging from
zero to 255, should be given a
data type of BYTE. By default,
Tecplot 360 treats numeric data
as data type SINGLE. If any
variable in the zone uses the BIT
data type, the DATA PACKING
must be BLOCK. Refer to Data for
details.

150



Keyword Syntax Required
(Y/N)

Default Notes

DATAPACKING = <
datapacking>

N BLOCK In POINT format, the values for
all variables are given for the
first point, then the second point,
and so on. In BLOCK format, all
of the values for the first
variable are given in a block,
then all of the values for the
second variable, then all of the
values for the third, and so forth.
BLOCK format must be used for
cell-centered data and
polyhedral zones
(FEPOLYGON/FEPOLYHEDRAL),
as well as for all binary data.

VAR
LOCATION

=([set-of-vars]
=<varlocation>,
[set-of-vars]
=<varlocation>,
…)

N NODAL Each variable in each zone in a
data file may be located at the
nodes or the cell-centers. Each
variable is specified as NODAL or
CELLCENTERED in the
VARLOCATION parameter array.
All cell-centered variables must
list one value for each element.
With nodal variables, one value
must be listed for each node.
Zones with cell-centered
variables must be in BLOCK data
packing format.

VAR
SHARELIST

=([set-of-vars]
=<zone>,
[set-of-vars]
=<zone>)

N If zone number
is omitted, the
variables are
shared from the
previous zone.

Used for variables that are
exactly the same for a set of
zones. Specify the integer value
of the source zone. Ordered
zones may only share with
ordered zones having the same
dimensions. Finite element zones
may share with any zone having
the same number of nodes, for
nodal variables, or the same
number of cells, for cell-centered
data.

151



Keyword Syntax Required
(Y/N)

Default Notes

NV = <integer> N Specifies the variable number of
the variable representing the
"Node" value in finite element
data. The NV parameter is used
infrequently. It is mostly used
when the order in which nodes
are listed in the data file does not
match the node numbering
desired in the plot. Refer to
Finite Element Zone Node
Variable Parameters Example for
an example using the NV
parameter.

CONNECTIVITY
SHAREZONE

=<zone> N Specify the number of the zone
from which the connectivity is
shared. The connectivity list
(cell-basedfinite element only)
and face-neighbors may be
shared between zones using the
CONNECTIVITYSHAREZONE
parameter in the control line of
the current zone. Alternatively,
the parameter may be used to
share the Facemap Data for face-
based finite element zones.To
use connectivity sharing, the
zone must have the same
number of points and elements
(and faces, if the zone is face-
based), and be the same zone
type.

152



Keyword Syntax Required
(Y/N)

Default Notes

STRANDID = <integer> N Each zone can optionally specify
an integer value associating itself
with a particular strand. More
than one zone can associate itself
with a particular strand and
differentiate itself from other
zones by assigning different
SOLUTIONTIME values.
StrandID’s must be positive
integer values greater than or
equal to 1. By convention
strandID’s are successive integer
values.

SOLUTIONTIME = <double> N Specify a floating point time
value representing the solution
time. Zones can be organized
together by associating
themselves to the same
STRANDID.

PASSIVEVARLIS
T

= [set-of-vars] N All variables
non-passive

Use this option to make variables
passive. For example, to make
variables 4, 5, and 20 passive,
use this syntax:
PASSIVEVARLIST=[4-5,20]

See Best Practices,
[introduction/best-
practices/passive-variables], for
information on passive
variables.

153



Keyword Syntax Required
(Y/N)

Default Notes

AUXDATA NAME =
<string>

N Auxiliary data strings associated
with the current zone are
specified with the AUXDATA
parameter in the control line.
This auxiliary data may be used
in dynamic text, equations,
macros, or add-ons. There may
be multiple AUXDATA
parameters in the control line
for a zone, but names must be
unique. NOTE: The NAME
portion of the string cannot
contain spaces.
Auxiliary data is provided as
named strings:

AUXDATA EXPERIMENTDATE
="October 13, 2007, 8 A.M."

Data

Tecplot 360 supports the following six data types:

• DOUBLE (eight-byte floating point values).

• SINGLE (four-byte floating point values).

• LONGINT (four-byte integer values).

• SHORTINT (two-byte integer values).

• BYTE (one-byte integer values, from zero to 255).

• BIT

The arrangement of ASCII data depends upon the combination of datapacking (BLOCK or POINT),
variable location (NODAL or CELL-CENTERED). The zone type also plays a role in that not all forms of
datapacking and variable locations are supported by all zone types. In BLOCK data, the data is
arranged by variable, while in POINT data the data is arranged by point (node or data point, depending
upon the zone type). In NODAL data the variable values are defined at every node (FE data) or point
(ORDERED data). In CELLCENTERED data, the variable values are defined at the center of every cell
(ORDERED data) or element (FE data).

The available combinations of datapacking and variable location parameters are:

• Block - Nodal

154



• Block - Cell-centered

• Point - Nodal

The combination of POINT and CELLCENTERED is not available.

BLOCK - NODAL

In block data with nodal values, the data is arranged by variable and each variable is defined at the
nodes. The data arrangement is as follows:

A11 A12 … A1P

A21 A22 … A1P

…..

AV1 AV2 … AVP

where:

V = total number of nonpassive, nonshared variables

P = I * J * K (ordered zones) or NODES (FE zones)

BLOCK - CELLCENTERED

In block data with cell-centered values, the data is arranged by variable and each variable is defined at
the center of each cell (ORDERED data) or element (FE data). The data arrangement is as follows:

A11 A12 … A1P

A21 A22 … A1P

…..

AV1 AV2 … AVP

where:

V = total number of nonpassive, nonshared variables

P = (I-1) * (J-1) * (K-1) (ordered zones1)

or

P = ELEMENTS (FE zones)

1. For all I, J and K greater than one. When I, J or K is equal to one, a value of one is used instead of subtracting one.

POINT - NODAL

In point data, the values for all variables are given for the first point, then the second point and so on.
The variable location is always NODAL.

155



A11 A12 … A1V

A21 A22 … A1V

…..

AP1 AP2 … APV

where:

V = total number of nonpassive, nonshared variables

P = I * J * K (ordered zones)

or

P = NODES (FE zones)

General Formatting Rules

The following formatting guidelines apply to all data arrangements:

• Numerical values in zone data must be separated by one or more spaces, commas, tabs, new lines,
or carriage returns. The radix (decimal point) is ‘.‘ (period) even in locales that use another
character, such as ‘,‘ (comma).

• Blank lines are ignored.

• Integer (101325), floating point (101325.0), and exponential (1.01325E+05) numbers are accepted.

• To repeat a particular number in the data, precede it with a repetition number as follows:
"Rep*Num," where Rep is the repetition factor and Num is some numeric value to be repeated.
For example, you may represent 37 values of 120.5 followed by 100 values of 0.0 as follows:

    37*120.5, 100*0.0

Variable Sharing

Frequently, some variables are exactly the same for a set of zones. For example, a series of zones may
contain measurement or simulation data at the same XYZ-locations, but different times. In this case,
Tecplot 360’s memory usage may be dramatically reduced by sharing the coordinate variables between
the zones. The zones that variables are shared from are specified in the VARSHARELIST in the control line
of the current zone. The format is:

VARSHARELIST=([set-of-vars]= zzz, [set-of-vars]= zzz)

where set-of-vars is the set of variables that are shared and zzz is the zone they are shared from. If zzz
is omitted, the variables are shared from the previous zone.

For example:

156



VARSHARELIST=([4-6,11]=3, [20-23]=1, [13,15])

specifies that variables four, five, six and 11 are shared from zone three, variables 20, 21, 22, and 23
are shared from zone one, and variables 13 and 15 are shared from the previous zone. For variable
sharing, ordered zones may only share with ordered zones having the same dimensions. Finite
element zones may share with any zone having the same number of nodes (for nodal variables) or the
same number of cells (for cell-centered data).

Zone Footer

The contents required for the Zone Footer depend upon the ZONETYPE (specified in the Zone Header.

Ordered zones

The Zone Footer contains the Face Neighbor Connections List (if any).

Cell-based finite element zones (FETRIANGLE, FEQUADRILATERAL, FETETRAHEDRAL and
FEBRICK)

the Zone Footer contains Connectivity information, followed by Face Neighbor Connections List (if
any).

Face-based finite element zones (FEPOLYHEDRAL, FEPOLYGON)

the Zone Footer contains Facemap Data, followed by Boundary Map Data.

 Remember that Tecplot Focus cannot load face-based (polygonal or polyhedral) data.

Connectivity

For cell-based finite element zones (FETRIANGLE, FEQUADRILATERAL, FETETRAHEDRAL, and
FEBRICK), the nodal data is followed by the connectivity information. The connectivity list is not
preceded by a token or keyword. It is simply a list of numbers.

The connectivity list details the node numbers of all of the nodes included in each element. When
providing the connectivity list, please keep in mind the following guidelines:

• Each row in the connectivity list corresponds to an element, where the first row corresponds to the
first element, and so forth.

• The node numbers must be provided in order, either clockwise or counter-clockwise.

• You must provide the same number of nodes as are included in an element. For example, you must
provide eight numbers for BRICK elements and three numbers for TRIANGLE elements. If you are
using repeated nodes, provide the node number of the repeated node multiple times.

See also: Connectivity Sharing

The connectivity for face-based zones (FEPOLYGON and FEPOLYHEDRAL) is defined by the Facemap

157



Data.

 Remember that Tecplot Focus cannot load face-based (polygonal or polyhedral) data.

Face Neighbor Connections List

For ordered zones, the data section may be followed with face neighbor connections. For cell-based
finite element zones, the data section and connectivity list may be followed by the face neighbor
connection information.

Use face neighbors to specify connections between zones (global connections) or connections within
zones (local connections). Face neighbor connections are used by Tecplot when deriving variables or
drawing contour lines. Specifying face neighbors, typically leads to smoother connections. NOTE: face
neighbors have expensive performance implications. Use face neighbors to manually specify
connections that are not defined via the connectivity list.

Face neighbor connections are defined by the FACENEIGHBORMODE and
FACENEIGHBORCONNECTIONS tokens along with the Face Neighbor Connections list. The
FACENEIGHBORMODE token is used to specify the type of face neighbor connection used. The
FACENEIGHBORCONNECTIONS token is used to define the total number of face neighbor connections
included in the zone.

The nature of the data arranged in the Face Neighbor Connections list depends upon the
FACENEIGHBORMODE, described in the table below. To connect the cells along one edge to cells on another
edge of the same zone, use LOCAL. To connect cells of one zone to cells of another zone or zones, use
GLOBAL. If the points of the cells are exactly aligned with the neighboring cell points, use ONETOONE. If
even one cell face is neighbor to two or more other cell faces, use ONETOMANY

Mode Number of Values Order of Data in the Face Neighbor
Connections List

LOCALONETOONE 3 cz, fz, nc

LOCALONETOMANY nz+4 cz, fz, oz, nz, nc1, nc2, …, ncn

GLOBALONETOONE 4 cz, fz, zr, cr

GLOBALONETOMANY 2*nz+4 cz, fz, oz, nz, zrl, crl, zr2, cr2, …, zrn, crn

In this table,

• cz -the cell number in the current zone

• fz - the number of the cell face in the current zone

• nc -the cell number of the neighbor cell in the current zone

• oz - face obscuration flag (zero for face partially obscured, one for face entirely obscured)

• nz - the number of neighboring cells for the ONETOMANY options

158



• ncn - the number of the nth local zone neighboring cell in the list

• zr - the remote zone number

• cr - the cell number of the neighboring cell in the remote zone

• zrn - the zone number of the nth neighboring cell in the GLOBALONETOMANY list

• crn - the cell number in the remote zone of the nth neighboring cell in the GLOBALONETOMANY list.

The cz, fz combinations must be unique; multiple entries are not allowed. The face numbers for cells
in the various zone types are defined in the figures below:

Figure 14. Example of node and face neighbors for an FE-brick cell or IJK-ordered cell.

Figure 15. Example of node and face numbering for an IJ-ordered/ FE-quadrilateral cell.

Figure 16. Example of tetrahedron face neighbors.

A connection must be specified for two matching cell faces to be effective. The nature of the Face
Neighbor Connections list depends upon its FACENEIGHBORMODE.

For example, for data with a FACENEIGHBORMODE of GLOBALONETOONE, if cell six, face two in zone nine should

159



be connected to cell one, face four in zone 10, the connections for zone nine must include the line:

6 2 10 1 (cell#, face#, connecting zone#, connecting cell#)

And the connections for zone 10 must include this line:

1 4 9 6 (cell#, face#, connecting zone#, connecting cell#)

Global face neighbors are useful for telling Tecplot 360 about the connections between zones. This
could be used, for example, to smooth out the crease in Gouraud surface shading at zone boundaries.
For cell-centered data, they can make contours and streamtraces more continuous at zone boundaries.

Facemap Data

For face-based finite element zones (FEPOLYGON and FEPOLYHEDRAL), the data section is followed by
the Facemap Data section. If boundary faces are used, the Facemap Data section is followed by the
Boundary Map Data data section. Otherwise, the facemap data section marks the end of the zone
record.

 Remember that Tecplot Focus cannot load face-based (polygonal or polyhedral) data.

The face map data (in four major groupings) is defined by the following list:



Like the Data section of the zone record, the data region of the Face Map section does
not include tokens. It includes a list of data. The descriptors TotalNodesInFace,
WhichNodesInFace, LeftNeighborForFace and RightNeighborForFace should not be
included in your data file.

TotalNodesInFace

A space-separated list of the total number of nodes in each face:

NodesInFace1 NodesInFace2 … NodesInFaceF

where F is equal to the total number of faces.


The TotalNodesInFace section is not used for polygonal zones, as each face of a
polygon always has two nodes.

WhichNodesInFace

A list of the node numbers for each node in each face. The total amount placed on one line.

Face1Node1 Face1Node2 … Face1NodeTotalNodesInFace1 Face2Node1 Face2Node2 … FaceFNodeTotalNodesInFaceF

160



LeftNeighborForFace

A list of left neighboring elements for each face:

LeftElementForFace1 LeftElementForFace2 … LeftElementForFaceF

RightNeighborForFace

A list of right neighboring elements for each face:

LeftElementForFace1 LeftElementForFace2 … LeftElementForFaceF


The face map may be shared between zones in the same file by specifying the zone
number of the sharing zone in place of the CONNECTIVITYSHAREZONE value.

Defining Neighboring Elements

The left element and right element are determined by the left-hand versus right-hand winding rule.
The left and right neighboring elements represent elements within the current zone, and they are
always "one-to-one". That is, each face represents a complete interface between two elements. A nega­
tive value (-t) in either of the neighboring faces lists indicates that the neighboring element(s) are
defined in the boundary face section at the tth boundary face. Refer to Boundary Map Data for details.

Any face that has no neighboring element for either its right or left adjacent element, will use a value
of zero for the element value.

See also Connectivity Sharing.

Boundary Map Data

If the NUMCONNECTEDBOUNDARYFACES is greater than zero, the boundary map data section is
required. The boundary map data section should immediately follow the Facemap Data section. This
section does not need to be "one-to-one". One face can link up to multiple elements in other zones.

The boundary map data section need only be used for global or one-to-many connections. Local, one-
to-one connections should be defined as left/right elements.

The number of adjacent elements is listed for each of the boundary faces. Then each boundary face
lists the element number for each of its adjacent elements. Then each boundary face lists the zone
number for each of its adjacent elements (0 can be used to refer to the current zone). The number of
the face is not specified but is implicit (first face listed is 1 and corresponds to -1 in the left/right
neighbor list, the second is 2 and corresponds to -2, etc.).

Connectivity Sharing

The connectivity list and face neighbor connections (for cell-based finite element zones) or the
facemap data (for face-based finite element zones) may be shared between zones by using the
CONNECTIVITYSHAREZONE parameter in the control line of the current zone. The format is:

161



CONNECTIVITYSHAREZONE=nnn

where nnn is the number of the zone that the connectivity is shared from. To use connectivity sharing,
the zone must have the same number of points and elements, and be the same zone type.

Text Record

Text records are used to import text directly from a data file. Text can also be imported into Tecplot
360 using a macro file. You may create data files containing only text records and read them into
Tecplot 360 just as you would read any other data file. You may delete and edit text originating from
data files just like text created interactively.

The text record consists of a single control line. The control line starts with the keyword TEXT and has
one or more options:

Text Record

Token Syntax Required
(Y/N)

Default Notes

TEXT Y Keyword required to start a text record

T = <string> Y The text string is defined in the required T
(text) parameter. To include multiple lines of
text in a single text record, include \n in the
text string to indicate a new line.

ZN = <integer> N Use the ZN (zone) parameter to attach text to
a specific zone or XY mapping. For further
information, see the User’s Manual.

X = <double> Y Specify the x-origin, y-origin and z-origin of
the object. The x-origin and y-origin should
be in CS (coordinatesys) units. The z-origin
of object must always in GRID units.

Y = <double> Y

Z = <double> Y

R = <double> Y r-origin (in CS units) of the object)

THETA = <double> Y theta-origin (in CS units) of the object)

CS = <coordinatesys> N FRAME Text coordinate system. If you specify the
frame coordinate system, the values of the X
(xorigin) and Y (yorigin) parameters are in
frame units; if you specify grid coordinates,
X and Y are in grid units (that is, units of the
physical coordinate system). Specify X, Y and
Z for GRID3D coordinates. For Polar Line
plots, you may specify THETA and R instead
of X and Y.

162

360-users-manual.pdf


Token Syntax Required
(Y/N)

Default Notes

A = <double> N Use the A parameter to rotate the text box at
an angle counter-clockwise from horizontal.
The angle is in units of degrees.

S = <scope> N Scope of the text box. GLOBAL scope attaches
the text box to all frames using the same
data set. It is the same as selecting the check
box Show in "Like" Frames in the Text
Options dialog.

BX = <boxtype> N NOBOX Draw a box around the text string using the
BX (boxtype) parameter. The parameters
BXO (boxoutlinecolor), BXM (boxmargin),
and LT (linethickness) are used if the
boxtype is HOLLOW or FILLED. The parameter
BXF (boxfillcolor) is used only if the boxtype
is FILLED. The default boxtype, NOBOX, ignores
all other box parameters.

BXF = <color> N BX must be set to FILLED.

BXM = <double> N When BX is set to HOLLOW or FILLED, use the
BXM token to specify the margin around text
in box as fraction of H (text height).

BXO = <color> N When BX is set to HOLLOW or FILLED, use the
BXO token to specify the color of the box
outline.

LT = <double> N When BX is set to HOLLOW or FILLED, use the LT
token to specify the thickness of the box
outline.

F =<font> N Use the F parameter to specify the font
family.

C = <color> N Font Color.

AN = <textanchor> N Use the AN (textanchor) parameter to specify
the position of the anchor point relative to
the text. There are nine possible anchor
positions, as shown in Figure 17.

LS = <double> N 1 Assign the line spacing for multi-line text
using the LS (linespacing) parameter. The
default value, 1, gives single-spacing. Use 1.5
for line-and-a-half spacing, 2 for double-
spacing, and so on.

163



Token Syntax Required
(Y/N)

Default Notes

H = <double> N Specify the height, measured in the units
defined by HU.

HU = <heightunits> N Units for character heights. If the CS
parameter is FRAME, you can set HU to either
FRAME or POINT. If the CS parameter is GRID,
you can set HU to either GRID or FRAME.

MFC = <string> N Attach a macro function to the text. The
macro function must be a retained macro
function that was either set during the
current Tecplot session or included in the
tecplot.mcr file. Refer to the User’s Manual
and Scripting Guide for additional
information.

CLIPPING = <clipping> N Plot the geometry within to the viewport or
the frame.

Figure 17. Text anchor positions—values for the AN parameter.

Text Record Examples

Some simple examples of text records are shown below. The first text record specifies only the origin
and the text. The next text record specifies the origin, color, font, and the text. The third text record
specifies the origin, height, box attributes, and text. Note that the control line for the text can span
multiple file lines if necessary (as in the third text record below). The last text record is an example of
using 3D text in Tecplot 360.

TEXT X=50, Y=50, T="Example Text"

TEXT X=10, Y=10, F=TIMES-BOLD, C=BLUE, T="Blue Text"

TEXT X=25, Y=90, CS=FRAME, HU=POINT, H=14,
     BX=FILLED, BXF=YELLOW, BXO=BLACK, LS=1.5,
     T="Box Text \\n Multi-lined text"

164

360-users-manual.pdf
360-scripting-guide.pdf


TEXT CS=GRID3D, X=0.23,Y=0.23,Z=0.5, T="Well 1"

Geometry Record

Geometry records are used to import geometries from a data file. Geometries are line drawings that
may be boundaries, arrows, or even representations of physical structures. You may create data files
containing only geometry and text records and read them into Tecplot 360. You may delete and edit
geometries originating from data files just like the geometries that you create interactively.

The geometry record control line begins with the keyword GEOMETRY.

Geometry Record Contents

Token Available Values Notes

GEOMETRY Keyword required to start a geometry record

T = <geomtype> Geometry Type

F = <datapacking> Geometry data format

DT = <datatype> Data type

ZN = <integer> Attach geom to a specific zone or XY mapping. For
further information, see the User’s Manual.

X = <double> Specify the x-origin, y-origin and z-origin of the
object. The x-origin and y-origin should be in CS
(coordinatesys) units. The z-origin of object must
always in GRID units.

Y = <double>

Z = <double>

R = <double> r-origin (in CS units) of the object)

THETA = <double> theta-origin (in CS units) of the object)

CS = <coordinatesys> Text coordinate system. If you specify the frame
coordinate system, the values of the X (xorigin)
and Y (yorigin) parameters are in frame units; if
you specify grid coordinates, X and Y are in grid
units (that is, units of the physical coordinate
system). Specify X, Y and Z for GRID3D coordinates.
For Polar Line plots, you may specify THETA and R
instead of X and Y.

DRAWORDER = <draworder> Draw order

S = <scope> The S (scope) parameter specifies the text scope.
GLOBAL scope attaches the text box to all frames
using the same data set. It is the same as selecting
the check box Show in "Like" Frames in the
Geometry Options dialog.

165

360-users-manual.pdf


Token Available Values Notes

C = <color> Geometry outline color.

L = <linetype> Line type

PL = <double> Pattern length (in frame units).

LT = <double> Line thickness (in frame units)

EP = <integer> Number of points used to approximate circles or
ellipses

FC = <color> Fill Color. Any geometry type except LINE3D may
be filled with a color by using the FC (fillcolor)
parameter. Each polyline of a LINE geometry is
filled individually (by connecting the last point of
the polyline with the first). Not specifying the FC
(fillcolor) parameter results in a hollow, or
outlined, geometry drawn in the color of the C
(color) parameter.

AST = <
arrowheadstyle>

Arrowhead style

AAT =
<arrowheadattach
>

Arrowhead attachment along the line geometry

ASZ = <double> Size of arrowhead in frame units

AAN = <double> Angle of arrowhead in degrees

MFC = <string> You may attach a macro function to the text with
the MFC parameter. The macro function must be a
retained macro function that was either set
during the current Tecplot session or included in
the tecplot.mcr file. Refer to the User’s Manual
and Scripting Guide for additional information.

CLIPPING = <clipping> Plot the geometry within the viewport or the
frame.

Data for Geometry Record

The control line of the geometry is followed by geometry data. For SQUARE, the geometry data consists of
just one number: the side length of the square.

For RECTANGLE, the geometry data consists of two numbers: the first is the width (horizontal axis
dimension), and the second is the height (vertical axis dimension).

For CIRCLE, the geometry data is one number: the radius. For ELLIPSE, the geometry data consists of two

166

360-users-manual.pdf
360-scripting-guide.pdf


numbers: the first is the horizontal axis length and the second is the vertical axis length. For both
circles and ellipses, you can use the EP (numellipsepts) parameter to specify the number of points used
to draw circles and ellipses. All computer-generated curves are simply collections of very short line
segments; the EP parameter allows you to control how many line segments Tecplot 360 uses to
approximate circles and ellipses. The default is 72.

For LINE and LINE3D geometries, the geometry data is controlled by the F (format) parameter. These
geometries may be specified in either POINT or BLOCK format. By default, POINT format is assumed. Each
geometry is specified by the total number of polylines, up to a maximum of 50 polylines, where each
polyline can have up to 32,000 points. Each polyline is defined by a number of points and a series of
XY- or XYZ- coordinate points between which the line segments are drawn. In POINT format, the XY- or
XYZ-coordinates are given together for each point. In BLOCK format, all the X-values are listed, then all
the Y-values, and (for LINE3D geometries) all the Z-values. All coordinates are relative to the X, Y, and Z
specified on the control line. You can specify points in either single or double precision by setting the
DT (datatype) parameter to either SINGLE or DOUBLE.

Origin positions

Geometry types are selected with the T (geomtype) parameter. The available geometry types are listed
below:

• SQUARE- A square with lower left corner at X, Y.

• RECTANGLE- A rectangle with lower left corner at X, Y.

• CIRCLE - A circle centered at X, Y.

• ELLIPSE- An ellipse centered at X, Y.

• LINE - A set of 2D polylines (referred to as multi-polylines) anchored at X, Y.

• LINE3D- A set of 3D polylines (referred to as multi-polylines) anchored at X, Y, Z.

Geometry Record Examples

Rectangle

The following geometry record defines a rectangle of 40 width and 30 height:

GEOMETRY T=RECTANGLE
40 30 #WIDTH HEIGHT

Circle

The following geometry record defines an origin and a red circle of 20 radius, with an origin of (75,
75) that is filled with blue:

GEOMETRY X=75, Y=75, T=CIRCLE, C=RED, FC=BLUE,CS=FRAME
20  #RADIUS

167



Polyline

The following geometry record defines an origin and two polylines, drawn using the Custom 3 color.
The first polyline is composed of three points, the second of two points.

GEOMETRY X=50, Y=50, T=LINE, C=CUST3
2        #Number of polylines
3        #Number of points in polyline 1
0 1      #X, Y coordinates of the point 1 in polyline 1
0 0      #X, Y coordinates of the point 2 in polyline 1
2 0      #X, Y coordinates of the point 3 in polyline 1
2        #Number of points in polyline 2
0 0      #X, Y coordinates of the point 1 in polyline 2
1 2      #X, Y coordinates of the point 2 in polyline 2

In BLOCK format, the same geometry appears as:

GEOMETRY X=50, Y=50, T=LINE, C=CUST3, F=BLOCK, CS=FRAME
2        #Number of polylines
3        #Number of points in polyline 1
0 0 2    #X position of each point in polyline 1
1 0 0    #Y position of each point in polyline 1
2        #Number of points in polyline 2
0 1      #X position of each point in polyline 2
0 2      #y position of each point in polyline 2

Ellipse

The next geometry record defines a purple ellipse with a horizontal axis length of 20 and a vertical
axis length of 10, with an origin of (10, 70), that is filled with yellow.

GEOMETRY X=10, Y=70, T=ELLIPSE, C=PURPLE, FC=YELLOW
20 10         #Horizontal Axis, Vertical Axis

3D polyline

The final geometry record is a 3D polyline with four points that is composed of one polyline using
the default origin of (0, 0, 0):

GEOMETRY T=LINE3D
1             #Number of polylines
4             #Number of points in polyline 1
0 0 0         #X, Y, Z coordinates of point 1
1 2 2         .
3 2 3         .

168



4 1 2         #X, Y, Z coordinates of point 4

In BLOCK format, this geometry record can be written as follows:

GEOMETRY T=LINE3D, F=BLOCK
1             #Number of polylines
4             #Number of points in polyline 1
0 1 3 4       #X position for each point in the polyline
0 2 2 1       #Y position for each point in the polyline
0 2 3 2       #Z position for each point in the polyline

Custom Labels Record

The custom label record is an optional record used to provide custom labels for axes, the contour
legend or value labels. A single custom label record begins with the keyword CUSTOMLABELS, followed by
a series of text strings. The first custom label string corresponds to a value of one on the axis, the next
to a value of two, and so forth.

You may have up to ten custom label records in a data file. The custom label set to use is specified via
the Tecplot interface. Refer to the User’s Manual for details.

A simple example of a custom-label record is shown below. MON corresponds to a value of 1, TUE
corresponds to 2, WED to 3, THU to 4, and FRI to 5. Since custom labels have a wrap-around effect, MON also
corresponds to the values 6, 11, and so forth.

CUSTOMLABELS "MON", "TUE", "WED", "THU", "FRI"

You may include \n in a custom label to indicate that the following text should start a new line. For
example,"Jan\n2012" appears in Tecplot 360 as:

Jan
2012


You must include a data set in order to use custom labels. You cannot use custom
labels in files that contain only text and/or geometries.

Data Set Auxiliary Data Record

There is frequently auxiliary data (or Metadata) that helps describe the data set. For example,
experimental data may have information about the facility and time at which the data was taken, and
other parameters that describe the experiment. Likewise, simulation results have auxiliary data (such
as reference quantities for non-dimensional data) needed to fully analyze and present the results.

169

360-users-manual.pdf


Auxiliary data are name/value pairs that a user can specify and then use in Tecplot 360 with dynamic
text, equations, macros, or add-ons. This data may be with respect to the data set as a whole or it can
vary from zone to zone. The ASCII file format token for specifying auxiliary data associated with the
entire data set is DATASETAUXDATA, described here. Auxiliary data for a given variable is defined by
VARAUXDATA, described in Variable Auxiliary Data Record. Auxiliary data for a given zone is defined
by the AUXDATA token within the zone record (refer to Zone Header for details).

The data set auxiliary data control line is as follows:

DATASETAUXDATA name = "value"

where name is a unique character string with no spaces. You may have multiple DATASETAUXDATA
records. However, the value of name must be unique for each record.

Auxiliary data may be used in text, macros, equations (if it is numeric), and accessed from add-ons. It
may also be viewed directly in the AuxData page of the Data Set Information dialog.

Data Set Auxiliary Data Examples

The following auxiliary data contain flow field information that might be found in output from a
computational fluid-dynamics simulation.

DATASETAUXDATA MachNo = "1.2"
DATASETAUXDATA Alpha = "5"
DATASETAUXDATA RefTemperature = "250"
DATASETAUXDATA RefPressure = "101325"
DATASETAUXDATA Configuration = "A2 No. 3"
DATASETAUXDATA Date = "August 5, 2003"
DATASETAUXDATA Region = "NE Quadrant of Sector 47"

You may then use the numerical values in equations to modify the variables as follows:

{P} = {P_non_dim} * AuxDataSet:RefPressure

Similar principles apply when using auxiliary data in text boxes or labels.

Variable Auxiliary Data Record

Variable auxiliary data is added to Tecplot 360 on a per variable basis. Like data set auxiliary data,
multiple items can be added for each variable:

VARAUXDATA 1 MyData="Hello"
VARAUXDATA 1 MoreData="World"

170



VARAUXDATA 2 MyData="More information"
VARAUXDATA 2 MoreData="hi mom"
VARAUXDATA 2 MyExtraData="Some extra data"

The variable number with which the auxiliary data is associated immediately follows the VARAUXDATA
record. Also note that the data associated with a particular auxiliary data name are unique for each
variable. Therefore the same named item can be added to each variable if desired. Conversely a
particular auxiliary data item can be added to only one variable. NOTE: The name of an auxiliary data
record cannot contain spaces.

ASCII Data File Parameter Assignment Values

The following parameter assignment values are shared among the following types of ASCII file records:
Zone Record, Text Record, and/or Geometry Record. Refer to those sections for details.

Table 3. ASCII Data File Parameter Assignment Values

<arrowheadstyle> PLAIN, HOLLOW, FILLED

<arrowheadattach
>

NONE, BEGINNING, END, BOTH

<boxtype> NOBOX, HOLLOW ,FILLED

<clipping> CLIPTOVIEWPORT, CLIPTOFRAME

<color> BLACK, RED, GREEN, BLUE, CYAN, YELLOW, PURPLE, WHITE, CUST1, …,
CUST8

<coordinatesys> FRAME, GRID, GRID3D

<datapacking> BLOCK, POINT

<datatype> SINGLE, DOUBLE, LONGINT, SHORTINT, BYTE, BIT1

<draworder> AFTERDATA,BEFOREDATA

<font> HELV, HELV-BOLD, TIMES, TIMES-ITALIC, TIMES-BOLD, TIMES-ITALIC-BOLD,
COURIER, COURIER-BOLD, GREEK, MATH, USER-DEF

<geomtype> LINE, SQUARE, RECTANGLE, CIRCLE, ELLIPSE, LINE3D

<heightunits> In FRAME coordinatesys either FRAME or POINT; in GRID coordinatesys
either GRID or FRAME.

<linetype> SOLID, DASHED, DASHDOT, DOTTED, LONGDASH, DASHDOTDOT

<scope> GLOBAL, LOCAL

<textanchor> LEFT, CENTER, RIGHT, MIDLEFT, MIDCENTER, MIDRIGHT, HEADLEFT,
HEADCENTER, HEADRIGHT

<varlocation> NODAL, CELLCENTERED

<zone> zone number to which this item is assigned (0=all)

171



<zonetype> ORDERED, FELINESEG, FETRIANGLE, FEQUADRILATERAL,
FETETRAHEDRON, FEBRICK, FEPOLYGON or FEPOLYHEDRAL. Note that
Tecplot Focus cannot load FEPOLYGON or FEPOLYHEDRAL zones.

1. LONGINT, SHORTINT, BYTE, AND BIT are only vailable for Zone Records.

Ordered Data
For ordered data, the numerical values in the zone data must be in either POINT or BLOCK format,
specified by the DATAPACKING parameter.

I-Ordered Data

I-ordered data has only one index, the I-index. This type of data is typically used for XY-plots, scatter
plots, and irregular (random) data for triangulation or for interpolation into an IJ-or IJK-ordered zone
within Tecplot 360.

In I-ordered data, the I-index varies from one to IMax. The total number of data points is IMax. For
zones with only nodal variables, the total number of values in the zone data is IMax*N _ (where _N is
the number of variables). For a mixture of nodal and cell-centered variables, the number of values in
the zone data is IMax*Nn+(IMax-1)*Nc, where Nn is the number of nodal variables and Nc is the
number of cell-centered variables. For data in POINT format, IMax is calculated by Tecplot 360 from the
zone data if it is not explicitly set by the zone control line (using the I-parameter).

IJ-Ordered Data

IJ-ordered data has two indices: I and J. IJ-ordered data is typically used for 2D and 3D surface mesh,
contour, vector, and shade plots, but it can also be used to plot families of lines in XY-plots. Refer to the
User’s Manual for more information on data structure. In IJ-ordered data, the I-index varies from one
to IMax, and the J-index varies from one to JMax. The total number of data points (nodes) is
IMax*JMax. For zones with only nodal variables, the total number of numerical values in the zone data
is IMax*JMax*N (where N is the number of variables). For a mixture of nodal and cell-centered
variables, the number of values in the zone data is IMax*JMax*Nn+(IMax-1)*(JMax-1)*Nc, where Nn is
the number of nodal variables and Nc is the number of cell-centered variables. Both IMax and JMax
must be specified in the zone control line (with the I and J parameters). The I- and J-indices should not
be confused with the X- and Y-coordinates—on occasions the two may coincide, but this is not the
typical case.

The I-index varies the fastest. That is, when you write programs to print IJ-ordered data, the I-index is
the inner loop and the J-index is the outer loop. Note the similarity between I-ordered data and IJ-
ordered data with JMax=1.

IJK-Ordered Data

IJK-ordered data has three indices: I, J, and K. This type of data is typically used for 3D volume plots,

172

360-users-manual.pdf


although planes of the data can be used for 2D and 3D surface plots. See the User’s Manual for more
information.

In IJK-ordered data, the I-index varies from one to IMax, the J-index varies from one to JMax, and the
K-index varies from one to KMax. The total number of data points (nodes) is IMax*JMax*KMax. For
zones with only nodal variables, the total number of values in the zone data is IMax*JMax*KMax*N,
where N is the number of variables. For a mixture of nodal and cell-centered variables, the number of
values in the zone data is IMax*JMax*KMax*Nn+(IMax-1)*(JMax-1)*(KMax-1)*Nc, where Nn is the
number of nodal variables and Nc is the number of cell-centered variables. The three indices, IMax,
JMax, and KMax, must be specified in the zone control line using the I, J, and K-parameters.

The I-index varies the fastest; the J-index the next fastest; the K-index the slowest. If you write a
program to print IJK-ordered data, the I-index is the inner loop, the K-index is the outer loop, and the J-
index is the loop in between. Note the similarity between IJ-ordered data and IJK-ordered data with
KMax=1.

Ordered Data Examples

The following examples are provided for your reference:

• I-Ordered Data - Simple example

• IJ-Ordered Data - Simple Example

• IJK-Ordered Data - Simple Example

• Multi-Zone XY Line Plot

• Multi-Zone XY Line Plot with Variable Sharing Example

• Cell-Centered Data

• Two-Dimensional Field Plots

• Three-Dimensional Field Plots

• Polygonal - simple example

• Polyhedral - complex example

I-Ordered Data - Simple example

This data set is plotted in Figure 18; each data point is labeled with its I-index.

173

360-users-manual.pdf


Figure 18. An I-ordered data set.

In this example, each column of zone data corresponds to a data point; each row to a variable.

VARIABLES = "X", "Y"
ZONE I=5, DATAPACKING=BLOCK
2 3 5 6 7
4 9 25 36 49

In BLOCK format all values of each variable are listed, one variable at a time.

FORTRAN Code

The following sample FORTRAN code shows how to create I-ordered data in BLOCK format:

   INTEGER VAR
   .
   .
   .
   WRITE (*,*) ´ZONE DATAPACKING=BLOCK, I=´, IMAX
   DO 1 VAR=1,NUMVAR
   DO 1 I=1,IMAX
     WRITE (*,*) ARRAY(VAR,I)
1   CONTINUE

IJ-Ordered Data - Simple Example

There are four variables (X, Y, Temperature, Pressure) and six data points.

174



Figure 19. An IJ-ordered data set.

In this example, each column of data corresponds to a data point; each row to a variable.

VARIABLES = "X", "Y", "Temperature", "Pressure"
ZONE I=2, J=3, DATAPACKING=BLOCK
3 7 2 6 1 5
0 2 4 6 8 9
0 0 1 0 1 1
50 43 42 37 30 21

In BLOCK format, all IMax*JMax values of each variable are listed, one variable at a time. Within each
variable block, all the values of a variable at each data point are listed.

FORTRAN Code

The following sample FORTRAN code shows how to create IJ-ordered data in BLOCK format:

    INTEGER VAR
   .
   .
   .
   WRITE (*,*) ´ZONE DATAPACKING=BLOCK, I=´, IMAX, ´, J=´, JMAX
   DO 1 VAR=1,NUMVAR
    DO 1 J=1,JMAX
        DO 1 I=1,IMAX
           WRITE (*,*) ARRAY(VAR,I,J)
1      CONTINUE

175



IJK-Ordered Data - Simple Example

An example of IJK-ordered data in BLOCK format is listed below. There are four variables (X, Y, Z,
Temperature) and twelve data points.This data is plotted in Figure 20; each data point is labeled with its
IJK-index.

Figure 20. An IJK-ordered data set.

For this example, each column of data corresponds to a data point; each row to a variable.

VARIABLES = "X" "Y" "Z" "Temp"
ZONE I=3, J=2, K=2, DATAPACKING=BLOCK
0 3 6 0 3 6 0 3 6 0 3 6
0 0 0 6 6 6 0 0 0 6 6 6
0 1 3 3 4 6 8 9 11 11 12 14
0 5 10 10 41 72 0 29 66 66 130 169

FORTRAN Code

The following sample FORTRAN code shows how to create an IJK-ordered zone in BLOCK format:

  INTEGER VAR
 .
 .
 .
 .
 WRITE (*,*) ´ZONE DATAPACKING=BLOCK, I=´, IMAX, ´, J=´, JMAX, ´, K=´, KMAX
 DO 1 VAR=1,NUMVAR

176



 DO 1 K=1,KMAX
 DO 1 J=1,JMAX
 DO 1 I=1,IMAX
 WRITE (*,*) ARRAY(VAR,I,J,K)
1   CONTINUE

Multi-Zone XY Line Plot

The two tables below show the values of pressure and temperature measured at four locations on
some object at two different times. The four locations are different for each time measurement.

Time = 0.0 seconds: Time = 0.1 seconds:

Position Temperature Pressure Position Temperature Pressure

71.30 563.7 101362.5 71.31 564.9 101362.1

86.70 556.7 101349.6 84.42 553.1 101348.9

103.1 540.8 101345.4 103.1 540.5 101344.0

124.4 449.2 101345.2 124.8 458.5 101342.2

For this case, we want to set up two zones in the data file, one for each time value. Each zone has three
variables (Position, Temperature, and Pressure) and four data points (one for each location). This means
that IMax=4 for each zone. We include a text record (discussed in Text Record) to add a title to the plot.
The plot shown in Figure 21 can be produced from this file.

Figure 21. A multi-zone XY Line plot.

All of the values for the first variable (Position) at each data point are listed first, then all of the values
for the second variable (Temperature) at each data point, and so forth.

177



TITLE = "Example: Multi-Zone XY Line Plot"
VARIABLES = "Position", "Temperature", "Pressure"
ZONE DATAPACKING=BLOCK, T="0.0 seconds", I=4
71.30 86.70 103.1 124.4
563.7 556.7 540.8 449.2
101362.5 101349.6 101345.4 101345.2
ZONE DATAPACKING=BLOCK, T="0.1 seconds", I=4
71.31 84.42 103.1 124.8
564.9 553.1 540.5 458.5
101362.1 101348.9 101344.0 101342.2
TEXT CS=FRAME, HU=POINT, X=16, Y=90, H=28, T="SAMPLE CASE"

Multi-Zone XY Line Plot with Variable Sharing Example

If the data from the section above was taken at the same position for both times, variable sharing could
reduce memory usage and file size. That file appears as:

TITLE = "Example: Multi-Zone XY Line Plot with Variable Sharing"
VARIABLES = "Position", "Temperature", "Pressure"
ZONE T="0.0 seconds", I=4
71.30 563.7 101362.5
86.70 556.7 101349.6
103.1 540.8 101345.4
124.4 449.2 101345.2
ZONE T="0.1 seconds", I=4
VARSHARELIST=([1]=1)            #share variable 1 from zone 1
564.9 101362.1
553.1 101348.9
540.5 101344.0
458.5 101342.2
TEXT CS=FRAME, HU=POINT, X=16, Y=90, H=28, T="SAMPLE VARIABLE SHARING CASE"

Cell-Centered Data

An example of IJ-ordered data with cell-centered variables might include four variables (X, Y,
Temperature, Pressure), nine data points, and four cells where Temperature and Pressure are cell-
centered.

178



Figure 22. An IJ-ordered data set with cell-centered data.

VARIABLES = "X", "Y", "Temperature", "Pressure"
ZONE I=3, J=3, DATAPACKING=BLOCK, VARLOCATION=([3,4]=CELLCENTERED)
3 7 11 2 6 10 1 5 9
0 2 3 4 6 8 8 9 10
0 2 1 3
45 60 35 70

The nodal variables of X and Y are specified at all nine nodes, and the values of cell-centered variables
are specified at the four cells [(IMax-1)*(JMax-1)]. Zones with cell-centered data must have
DATAPACKING=BLOCK.

Two-Dimensional Field Plots

A 2D field plot typically uses an IJ-ordered or finite element surface data set. However, any data
structure can be viewed as a 2D field plot, by simply selecting "2D Cartesian" from the plot-type menu
in the Plot sidebar.

An IJ-ordered data file has the basic structure shown below:

TITLE = "Example: Multi-Zone 2D Plot"
VARIABLES = "X", "Y", "Press", "Temp", "Vel"
ZONE T="BIG ZONE", I=3, J=3, DATAPACKING=POINT
1.0 2.0 100.0 50.0 1.0
1.0 3.0 95.0 50.0 1.00

179



1.0 4.0 90.0 50.0 0.90
2.0 2.0 91.0 40.0 0.90
2.0 3.0 85.0 40.0 0.90
2.0 4.0 80.0 40.0 0.80
3.0 2.0 89.0 35.0 0.85
3.0 3.0 83.0 35.0 0.80
3.0 4.0 79.0 35.0 0.80
ZONE T="SMALL ZONE", I=3, J=2, DATAPACKING=POINT
3.0 2.0 89.0 35.0 0.85
3.5 2.0 80.0 35.0 0.85
4.0 2.0 78.0 35.0 0.80
3.0 3.0 83.0 35.0 0.80
3.5 3.0 80.0 35.0 0.85
4.0 3.0 77.0 33.0 0.78

This data file has two zones and five variables. The first zone has nine data points arranged in a three-
by-three grid (I=3, J=3). Each row of each zone represents one data point, where each column
corresponds to the value of each variable for a given data point, i.e. X = 1.0, Y = 2.0, Press = 100.0, Temp
= 50.0, and Vel=- 1.0 for data point one in zone one (Big Zone).

Similarly, the second zone (Small Zone) has six data points in a three-by-two mesh (I=3, J=2). Reading
this data file yields the mesh plot shown in <FIG:twod-fe-data>>.

Refer to Two-Dimensional Field Plots for an presentation of the same data in finite element format.

Three-Dimensional Field Plots

IJK-ordered data sets have the general form shown below:

TITLE = "Example: Simple 3D Volume Data"
VARIABLES = "X", "Y", "Z", "Density"
ZONE I=3, J=4, K=3, DATAPACKING=POINT
1.0 2.0 1.1 2.21
2.0 2.1 1.2 5.05
3.0 2.2 1.1 7.16
1.0 3.0 1.2 3.66
...

Finite Element Data
The zone header for a finite element zones lists the zone type, along with the number of nodes,
elements and faces included in the zone. The following zone types are available for finite element data:

FELINESEG

FE line segments zones contain one-dimensional finite element zones. For the line segment element

180



type, each line of the connectivity list contains two node numbers that define a linear element.

FETRIANGLE

FE triangular zones contain two-dimensional finite elements defined by three nodes. For the
triangle element type, each line of the connectivity list contains three node numbers that define a
triangular element.

FEQUADRILATERAL

FE quadrilateral zones contain two-dimensional elements defined by four nodes. For the
quadrilateral element type, each line of the connectivity list contains four node numbers that define
a quadrilateral element.


If you need to mix quadrilateral and triangle elements, either use the polygonal zone
type or use the quadrilateral element type with node numbers repeated to form
triangles.

FEPOLYGON

FE polygonal zones contain two-dimensional elements defined by a varying number of nodes (three
or greater). Note that Tecplot Focus cannot load this type of zone.

FETETRAHEDRON

FE tetrahedral zones contain three-dimensional elements defined by four nodes.

FEBRICK

FE brick zones contain three-dimensional elements defined by eight nodes. Tecplot 360 divides the
eight nodes into two groups of four; nodes N1M, N2M, N3M, and N4M make up the first group, and N5M,
N6M, N7M, and N8M make up the second group (where N# is the node number and M is the element
number). Each node is connected to two nodes within its group and the node in the corresponding
position in the other group. For example, N1M is connected to N2M and N4M in its own group, and to
N5M in the second group.

To create elements with fewer than eight nodes, repeat nodes as necessary, keeping in mind the basic
brick connectivity just described. Figure 23 shows the basic brick connectivity. For example, to create a
tetrahedron, you can set N3M=N4M and N5M=N6M=N7M=N8M. To create a quadrilateral-based pyramid,
you can set N5M=N6M=N7M=N8M.

181



Figure 23. Basic brick connectivity.

FEPOLYHEDRAL

FE polyhedral zones contain elements with a varying number of faces. Each element has at least
four faces. The faces are defined by any number of nodes (with a minimum of three nodes in each
face). Note that Tecplot Focus cannot load this type of zone.

Refer to Zone Record for a complete list of the tokens included in the zone header.

After the zone header, the nodal data is listed. The nodal data contains the value of each variable for
each node or element. Refer to Data for details on arranging the data. The information following the
nodal data is dependent upon the zone type.

For cell-based finite element zone types (FETRIANGLE, FEQUADRILATERAL, FETETRAHEDRON, and FEBRICK), the
nodal data is followed by the connectivity section. The connectivity section describes arrangement of
cells, relative to one another. There must be numelements lines in the second section; each line defines
one element. The number of nodes per line in the connectivity list depends on the element type
specified in the zone control line (ZONETYPE parameter). For example, ZONETYPE=FETRIANGLE has three
numbers per line in the connectivity list. If nodes five, seven, and eight are connected, one line reads: 5
7 8. Refer to Connectivity for details. You may also define Face Neighbors following the connectivity
list. Face Neighbor Connections List for details.

For face-based zone type (FEPOLYGON and FEPOLYHEDRAL), the data section Data is followed by the zone
footer and facemap data sections. Refer to Facemap Data for details.

Variable and Connectivity List Sharing

The VARSHARELIST in the ZONE record allows you to share variables from specified previous zones. The
CONNECTIVITYSHAREZONE parameter in the ZONE record allows you to share the connectivity list from a
specified previous zone. The following is an example to illustrate these features. NOTE: Connectivity
and/or face neighbors cannot be shared when the face neighbor mode is set to Global.

The table below shows Cartesian coordinates X and Y of six locations, and the pressure measured there
at three different times (P1, P2, P3). The XY locations have been arranged into finite elements.

X Y P1 P2 P3

-1.0 0.0 100 110 120

182



X Y P1 P2 P3

0.0 0.0 125 135 145

1.0 0.0 150 160 180

-0.5 0.8 150 165 175

0.5 0.8 175 185 195

0.0 1.6 200 200 200

For this case, we want to set up three zones in the data file, one for each time measurement. Each zone
has three variables: X, Y, and P. The zones are of the triangle element type, meaning that three nodes
must be used to define each element. One way to set up this data file would be to list the complete set
of values for X, Y, and P for each zone. Since the XY-coordinates are exactly the same for all three
zones, a more compact data file can be made by using the VARSHARELIST. In the data file given below, the
second and third zones have variable sharing lists that share the values of the X- and Y-variables and
the connectivity list from the first zone. As a result, the only values listed for the second and third
zones are the pressure variable values. Note that the data could easily have been organized in a single
zone with five variables. Since blank lines are ignored in the data file, you can embed them to improve
readability. A plot of the data is shown in Figure 24.

Figure 24. A plot of finite element zones.

TITLE = "Example: Variable and Connectivity List Sharing"
VARIABLES = "X", "Y", "P"
ZONE T="P_1", DATAPACKING=POINT, NODES=6, ELEMENTS=4, ZONETYPE=FETRIANGLE
-1.0 0.0 100
0.0 0.0 125
1.0 0.0 150

183



-0.5 0.8 150
0.5 0.8 175
0.0 1.6 200

1 2 4
2 5 4
3 5 2
5 6 4

ZONE T="P_2", DATAPACKING=POINT, NODES=6, ELEMENTS=4, ZONETYPE=FETRIANGLE, VARSHARELIST =
([1, 2]=1), CONNECTIVITYSHAREZONE = 1
110 135 160 165 185 200

ZONE T="P_3", DATAPACKING=POINT, NODES=6, ELEMENTS=4,
ZONETYPE=FETRIANGLE, VARSHARELIST = ([1, 2]=1), CONNECTIVITYSHAREZONE =
1
120 145 180 175 195 200

Finite Element Data Set Examples

Creating a finite element data set is generally more complicated than creating a similar-sized ordered
data set. In addition to specifying all the data points, you must also specify the connectivity list.
Consider the data shown in Table 4.

Table 4. finite element Data

Node X Y P T

A 0.0 1.0 100.0 1.6

B 1.0 1.0 150.0 1.5

C 3.0 1.0 300.0 2.0

D 0.0 0.0 50.0 1.0

E 1.0 0.0 100.0 1.4

F 3.0 0.0 200.0 2.2

G 4.0 0.0 400.0 3.0

H 2.0 2.0 280.0 1.9

You can create a POINT Tecplot 360 data file for this data set as follows (a 2D mesh plot of this data set is
shown in Figure 25:

TITLE = "Example: 2D Finite Element Data"
VARIABLES = "X", "Y", "P", "T"
ZONE NODES=8, ELEMENTS=4, DATAPACKING=POINT, ZONETYPE=FEQUADRILATERAL
0.0 1.0 100.0 1.6

184



1.0 1.0 150.0 1.5
3.0 1.0 300.0 2.0
0.0 0.0 50.0 1.0
1.0 0.0 100.0 1.4
3.0 0.0 200.0 2.
4.0 0.0 400.0 3.0
2.0 2.0 280.0 1.9
1 2 5 4
2 3 6 5
6 7 3 3
3 2 8 8

Figure 25. A mesh plot of 2D finite element data.

The ZONE record describes completely the form and format of the data set: there are eight nodes,
indicated by the parameter NODES=8; four elements, indicated by the parameter ELEMENTS=4, and the
elements are all quadrilaterals, as indicated by the parameter ZONETYPE=FEQUADRILATERAL.

The same data file can be written more compactly in BLOCK format as follows:

TITLE = "Example: 2D Finite Element Data"
VARIABLES = "X", "Y", "P", "T"
ZONE NODES=8, ELEMENTS=4, DATAPACKING=BLOCK, ZONETYPE=FEQUADRILATERAL
0.0 1.0 3.0 0.0 1.0 3.0 4.0 2.0
1.0 1.0 1.0 0.0 0.0 0.0 0.0 2.0
100.0 150.0 300.0 50.0 100.0 200.0 400.0 280.0
1.6 1.5 2.0 1.0 1.4 2.2 3.0 1.9
1 2 5 4
2 3 6 5
6 7 3 3
3 2 8 8

In BLOCK format, all values for a single variable are written in a single block. The length of the block is
the number of data points in the zone. In POINT format, all variables for a single data point are written
in a block, with the length of the block equal to the number of variables.

185



 The connectivity list is the same for both POINT and BLOCK formats.

You can change the connectivity list to obtain a different mesh for the same data points. In the above
example, substituting the following connectivity list yields the five-element mesh shown in Figure 26.
(You must also change the ELEMENTS parameter in the zone control line to specify five elements.)

Figure 26. Finite element data of [#FIG:mesh-plot-3d-fe-data] with a different connectivity list

1 2 4 4
4 2 3 5
5 3 6 6
6 7 3 3
3 2 8 8

Two-Dimensional Field Plots

A 2D finite element data file is shown below:.

Figure 27. A 2D field plot.

186



TITLE = "Example: 2D Finite Element Data"
VARIABLES = "X", "Y", "P", "T"
ZONE NODES=8, ELEMENTS=4, DATAPACKING=POINT, ZONETYPE=FEQUADRILATERAL
0.0 1.0 75.0 1.6
1.0 1.0 100.0 1.5
3.0 1.0 300.0 2.0
0.0 0.0 50.0 1.0
1.0 0.0 100.0 1.4
3.0 0.0 200.0 2.2
4.0 0.0 400.0 3.0
2.0 2.0 280.0 1.9
1 2 5 4
2 3 6 5
6 7 3 3
3 2 8 8

The above finite element data file has eight nodes (the first eight rows of the zone) and four elements
(the last four rows of the zone). Each row in the node matrix represents a given node. Each column in
the row matrix corresponds to the value of each variable at a given node. The order of the variables
definition correlates to the order the variables are named in the data set, i.e. for node one, X = 0.0,
Y=1.0, P = 75.0 and T = 1.6. The element matrix defines the connectivity of the nodes, i.e. element one is
composed of nodes one, two, five and four.

Please refer to the User’s Manual for information on ordered and FE data sets.

Triangle Data in BLOCK Format Example

An example of triangle element type finite element data is listed below. There are two variables (X, Y)
and five data points. This data set is plotted in Figure 28 Each data point is labeled with its node
number.

Figure 28. A finite element triangle data set.

187

360-users-manual.pdf


In this example, each column of the data section corresponds to a node and each row to a variable.
Each row of the connectivity list corresponds to a triangular element and each column specifies a node
number.

VARIABLES = "X", "Y"
ZONE NODES=5, ELEMENTS=3, DATAPACKING=BLOCK, ZONETYPE=FETRIANGLE
1.0 2.0 2.5 3.5 4.0
1.0 3.0 1.0 5.0 1.0
1 2 3
3 2 4
3 5 4

FORTRAN Code

This FORTRAN code creates triangle element type finite element data in BLOCK format:

  INTEGER VAR
  .
  .
  WRITE (*,*) ´ZONE DATAPACKING=BLOCK, ZONETYPE=FETRIANGLE,NODES=´,NNODES,
',ELEMENTS=´,NELEM
  DO 1 VAR=1,NUMVAR
  DO 1 NODES=1,NNODES
    WRITE(*,*) VARRAY(VAR,NODES)
1  CONTINUE
  DO 2 M=1,NELEM
  DO 2 L=1,3
       WRITE (*,*) NDCNCT(M,L)
2  CONTINUE

Finite Element Zone Node Variable Parameters Example

The node variable parameter allows setting of the connectivity to match the value of the selected node
variable. In the example below, the files appear to be identical in Tecplot 360, although the
connectivity list has changed to reflect the values of the node order. Notice that the index value of the
nodes is not changed by the node variable value.

The original data set:

TITLE     = "Data with original node ordering"
VARIABLES = "X" "Y"
ZONE T="Triangulation" NODES=6, ELEMENTS=5,DATAPACKING=POINT, ZONETYPE=FETRIANGLE
DT=(SINGLE SINGLE)
2.00E+000 3.00E+000

188



2.20E+000 3.10E+000
3.10E+000 4.20E+000
2.80E+000 3.50E+000
2.40E+000 2.10E+000
4.30E+000 3.20E+000
1 2 5
6 4 3
5 4 6
2 3 4
5 2 4

The data set with the nodes re-ordered for connectivity:

TITLE     = "Data with modified node ordering"
VARIABLES = "X" "Y" "Node-Order"
ZONE T="Triangulation" NODES=6, NV = 3, ELEMENTS=5,DATAPACKING=POINT, ZONETYPE=FETRIANGLE
DT=(SINGLE SINGLE)
2.00E+000 3.00E+000 5
2.20E+000 3.10E+000 4
3.10E+000 4.20E+000 1
2.80E+000 3.50E+000 2
2.40E+000 2.10E+000 6
4.30E+000 3.20E+000 3
5 4 6
3 2 1
6 2 3
4 1 2
6 4 2

FE surface data

Finite element surface data specify node locations in three dimensions. Consider the data in Table 5.
Locations are listed for eleven nodes, each having only the three spatial variables X, Y, and Z. We
would like to create an finite element surface zone with this data set, where some of the elements are
triangles and some are quadrilaterals. All the elements could be organized into one zone of element
type Quadrilateral. However, as an illustration of creating 3D surface data, create three zones: one
triangular, one quadrilateral, and one a mixture (using quadrilaterals with repeated nodes for the
triangles).

Table 5. Data set with
eleven nodes and three
variables.

X Y Z

0.0 0.0 1.0

189



X Y Z

0.0 0.0 -2.0

1.0 0.0 -2.0

1.0 1.0 0.0

1.0 1.0 -1.0

1.0 -1.0 0.0

1.0 -1.0 -1.0

-1.0 1.0 0.0

-1.0 1.0 -1.0

-1.0 -1.0 0.0

-1.0 -1.0 -1.0

A Tecplot 360 data file for the data in Table 5 is shown below in POINT format and plotted in Figure 29:

TITLE = "Example: 3D FE-SURFACE ZONES"
VARIABLES = "X", "Y", "Z"
ZONE T="TRIANGLES", NODES=5, ELEMENTS=4, DATAPACKING=POINT, ZONETYPE=FETRIANGLE
0.0 0.0 1.0
-1.0 -1.0 0.0
-1.0 1.0 0.0
1.0 1.0 0.0
1.0 -1.0 0.0
1 2 3
1 3 4
1 4 5
1 5 2
ZONE T="PURE-QUADS", NODES=8, ELEMENTS=4, DATAPACKING=POINT, ZONETYPE=FEQUADRILATERAL
-1.0 -1.0 0.0
-1.0 1.0 0.0
1.0 1.0 0.0
1.0 -1.0 0.0
-1.0 -1.0 -1.0
-1.0 1.0 -1.0
1.0 1.0 -1.0
1.0 -1.0 -1.0
1 5 6 2
2 6 7 3
3 7 8 4
4 8 5 1
ZONE T="MIXED", NODES=6, ELEMENTS=4, DATAPACKING=POINT, ZONETYPE=FEQUADRILATERAL
-1.0 -1.0 -1.0
-1.0 1.0 -1.0

190



1.0 1.0 -1.0
1.0 -1.0 -1.0
0.0 0.0 -2.0
1.0 0.0 -2.0
1 5 2 2
2 5 6 3
3 4 6 6
4 1 5 6

Figure 29. Three-dimensional mesh plot of finite element surface data.

FE Volume Data Files

Finite element volume data in Tecplot 360 is constructed from either tetrahedra having four nodes or
bricks having eight nodes. Bricks are more flexible, because they can be used (through the use of
repeated nodes in the connectivity list) to construct elements with fewer than eight nodes and combine
those elements with bricks in a single zone.

Finite Element Volume - Brick Data Set

As a simple example of finite element volume brick data, consider the data in Table 6. The data can be
divided into five brick elements, each of which is defined by eight nodes.

Table 6. Finite Element
Volume - Brick Data Set.
Data with 14 nodes and
four variables.

X Y Z Tem
pera
ture

0.0 0.0 0.0 9.5

1.0 1.0 0.0 14.5

191



X Y Z Tem
pera
ture

1.0 0.0 0.0 15.0

1.0 1.0 1.0 16.0

1.0 0.0 1.0 15.5

2.0 2.0 0.0 17.0

2.0 1.0 0.0 17.0

2.0 0.0 0.0 17.5

2.0 2.0 1.0 18.5

2.0 1.0 1.0 20.0

2.0 0.0 1.0 17.5

2.0 2.0 2.0 18.0

2.0 1.0 2.0 17.5

2.0 0.0 2.0 16.5

In each element’s connectivity list, Tecplot 360 draws connections from each node to three other nodes.
You can think of the first four nodes in the element as the "bottom" layer of the brick, and the second
four nodes as the "top." Within the bottom or top layer, nodes are connected cyclically (1-2-3-4-1; 5-6-7-
8-5); the layers are connected by connecting corresponding nodes (1-5; 2-6; 3-7; 4-8). Figure 23
illustrates this basic connectivity. When you are creating your own connectivity lists for brick
elements, you must keep this basic connectivity in mind, particularly when using duplicate nodes to
create pyramids and wedges. Tecplot 360 lets you create elements that violate this basic connectivity,
but the result will probably not be what you want.

The data file in POINT format is shown below:

TITLE = "Example: FE-Volume Brick Data"
VARIABLES = "X", "Y", "Z", "Temperature"
ZONE NODES=14, ELEMENTS=5, DATAPACKING=POINT, ZONETYPE=FEBRICK
0.0 0.0 0.0 9.5
1.0 1.0 0.0 14.5
1.0 0.0 0.0 15.0
1.0 1.0 1.0 16.0
1.0 0.0 1.0 15.5
2.0 2.0 0.0 17.0
2.0 1.0 0.0 17.0
2.0 0.0 0.0 17.5
2.0 2.0 1.0 18.5
2.0 1.0 1.0 20.0

192



2.0 0.0 1.0 17.5
2.0 2.0 2.0 18.0
2.0 1.0 2.0 17.5
2.0 0.0 2.0 16.5
1 1 1 1 2 4 5 3
2 4 5 3 7 10 11 8
4 4 5 5 10 13 14 11
4 4 4 4 9 12 13 10
2 2 4 4 7 6 9 10

The same data in BLOCK format is shown below:

TITLE = "Example: FE-Volume Brick Data"
VARIABLES = "X", "Y", "Z", "Temperature"
ZONE NODES=14, ELEMENTS=5, DATAPACKING=BLOCK, ZONETYPE=FEBRICK
0.0 1.0 1.0 1.0 1.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
0.0 1.0 0.0 1.0 0.0 2.0 1.0 0.0 2.0 1.0 0.0 2.0 1.0 0.0
0.0 0.0 0.0 1.0 1.0 0.0 0.0 0.0 1.0 1.0 1.0 2.0 2.0 2.0
9.5 14.5 15.0 16.0 15.5 17.0 17.0
17.5 18.5 20.0 17.5 18.0 17.5 16.5
1 1 1 1 2 4 5 3
2 4 5 3 7 10 11 8
4 4 5 5 10 13 14 11
4 4 4 4 9 12 13 10
2 2 4 4 7 6 9 10

Figure 30 shows the resulting mesh plot from the data set listed in this section.

Figure 30. A finite element brick zone.

Finite Element Volume - Tetrahedral Data Set

As a simple example of a finite element volume data set using tetrahedral elements, consider the data
in Table 7. The data set consists of thirteen nodes, with seven variables. The nodes are to be connected

193



to form twenty tetrahedral elements, each with four nodes.

Table 7. Finite Element Volume -
Tetrahedral data set with 13
nodes and seven variables.

X Y Z C U V W

0 0 -95 -1 1 0 8

0 85 -42 0 -5 -3 9

81 26 -42 2 -22 80 8

50 -69 -42 -6 72 52 9

-50 -69 -42 14 67 -48 9

-81 26 -2 20 -30 -82 9

0 0 0 1 -2 -5 10

50 69 43 14 -68 48 11

81 -26 43 20 31 82 11

0 -85 43 0 84 -3 10

-81 -26 43 2 21 -80 11

-50 69 43 -6 -71 -51 11

0 0 96 1 0 -1 12

The data file in POINT format for the data in Table 7 is shown below, and plotted in Figure 31:

TITLE = "Example: FE-Volume Tetrahedral Data"
VARIABLES = "X", "Y", "Z", "C", "U", "V", "W"
ZONE NODES=13, ELEMENTS=20, DATAPACKING=POINT, ZONETYPE=FETETRAHEDRON
0 0 -95 -1 1 0 8
0 85 -42 0 -85 -3 9
81 26 -42 2 -22 80 8
50 -69 -42 -6 72 52 9
-50 -69 -42 14 67 -48 9
-81 26 -42 20 -30 -82 9
0  0 0 1 -2 -5 10
50 69 43 14 -68 48 11
81 -26 43 20 31 82 11
0 -85 43 0 84 3 10
-81 -26 43 2 21 -80 11
-50 69 43 -6 -71 -51 11
0  0 96 1 0 -1 12
1 2 3 7
1 3 4 7

194



1 4 5 7
1 5 6 7
1 6 2 7
2 8 3 7
3 9 4 7
4 10 5 7
5 11 6 7
6 12 2 7
12 2 8 7
8 3 9 7
9 4 10 7
10 5 11 7
11 6 12 7
12 8 13 7
8 9 13 7
9 10 13 7
10 11 13 7
11 12 13 7

Figure 31. Finite element volume tetrahedral data.

Polygonal - simple example

 Remember that Tecplot Focus cannot load face-based (polygonal or polyhedral) data.

A polygonal element in one zone connected to an element in another zone.

195



Zone ZoneType=FEPolygon Nodes=3 Faces=3 Elements=1 NumConnectedBoundaryFaces=2
TotalNumBoundaryConnections=1

…variable values in block format…

#face nodes
1 2
2 3
3 1
#left elements
1 1 1
#right elements (negative indicates boundary connections)
0 -1 0
#boundary connection counts
1
#boundary connection elements
1
#boundary connection zones
2

Polyhedral - complex example

 Remember that Tecplot Focus cannot load face-based (polygonal or polyhedral) data.

A single tetrahedron bounded on face two by zone two (elements 13 and 14) and on face three by zone
three (element 11).

Zone ZoneType=FEPolyhedron Nodes=4 Faces=4 Elements=1 TotalNumFaceNodes=12
NumConnectedBoundaryFaces=2 TotalNumBoundaryConnections=3

…variable values in block format…

#node count per face
3 3 3 3
#face nodes
1 2 3
1 4 2
2 4 3
3 4 1
#left elements (negative indicates boundary connection)
0 -1 -2 0
#right elements
1 1 1 1

196



#boundary connection counts
2 1
#boundary connection elements
13 14 11
#boundary connection zones
2 2 3

ASCII Data File Conversion to Binary
Although Tecplot 360 can read and write ASCII or binary data files, binary data files are more compact
and are read into Tecplot 360 much more quickly. Even if you write ASCII files, for best performance,
we recommend that you convert your data files to binary as a post-processing step, before interactive
visualization.

In the bin folder of your Tecplot 360 distribution you will find Preplot, which converts ASCII to binary
data files. You can also use Preplot to debug ASCII data files that Tecplot 360 cannot read.

Preplot Options

To use Preplot, type the following command from the UNIX shell prompt, from a DOS prompt, or using
the Run command on Windows platforms:

preplot infile [outfile] [options]

where infile is the name of the ASCII data file, outfile is an optional name for the binary data file
created by Preplot, and options is a set of options from the standard set of Preplot options. If outfile is
not specified, the binary data file has the same base name as the infile with a .plt extension. You may
use a minus sign (-) in place of either the infile or outfile to specify standard input or standard output,
respectively.

Any or all of -iset, -jset, and -kset can be set for each zone, but only one of each per zone.

For the standard set of preplot options, see the User’s Manual.

Preplot Examples

If you have an ASCII file named dset.dat, you can create a binary data file called dset.plt with the
following Preplot command:

preplot dset.dat dset.plt

By default, Preplot looks for files with the .dat extension, and creates binary files with the .plt
extension. Thus, either of the following commands is equivalent to the above command:

197

360-users-manual.pdf


preplot dset
preplot dset.dat

Preplot checks the input ASCII data file for errors such as illegal format, numbers too small or too
large, the wrong number of values in a data block, and illegal finite element node numbers. If Preplot
finds an error, it issues a message displaying the line and column where the error was first noticed.
This is only an indication of where the error was detected; the actual error may be in the preceding
columns or lines.

If Preplot encounters an error, you may want to set the debug option to get more information about
the events leading up to the error:

preplot dset.dat -d

You can set the flag to -d2, or -d3, or -d4, and so forth, to obtain more detailed information.

In the following Preplot command line, the number of points that are written to the binary data file
dset.plt is less than the number of points in the input file dset.dat:

preplot dset.dat -iset 3,6,34,2 -jset 3,1,21,1 -iset 4,4,44,5

For zone three, Preplot outputs data points with I-index starting at six and ending at 34, skipping every
other one, and J-index starting at one and ending at 21. For zone four, Preplot outputs data points with
the I-index starting at four, ending at 44, and skipping by five.

In the following Preplot command line, every other point in the I-, J-, and K-directions is written to the
binary data file:

preplot dset.dat -iset ,,,2 -jset ,,,2 -kset ,,,2

The zone, start, and end parameters are not specified, so all zones are used, starting with index one,
and ending with the maximum index. The overall effect is to reduce the number of data points by a
factor of about eight.

Reading SZL Data Files
In addition to writing .plt and .szplt files, TecIO includes an API that allows your application to read
.szplt files, Tecplot’s new high-performance subzone format. As we make improvements to the file
format, we will update the TecIO library accordingly. The TecIO library does not support reading
Tecplot ASCII (.dat) or binary (.plt) files.

198



TecIO’s SZL reading capability is provided solely to provide compatibility with this new Tecplot file
format. The performance improvement achieved by strategically reading partial zones (or subzones) is
considered proprietary to Tecplot products and is not available to third-party developers.

As the SZL format evolves, we will strive to make each new version of the TecIO library a drop-in
replacement for the previous version, so that you need only distribute the new version of the library to
your users, or at most recompile your application. However, this may not always be feasible. We
currently consider it unlikely that we will need to significantly change the SZL reading API in the
future, but it is not impossible.

Tecplot is interested in your experiences with this API. Please contact support@tecplot.com with your
questions or feedback.

Getting Started with the API
All the functions you use to read SZL files are declared in TECIO.h (C or C++ programmers) or in
tecio.for or tecio.f90 (FORTRAN programmers) along with the other TecIO functions. The names of
the functions start with tec (lower-case) and contain read or get, for example
tecZonePolyGetFaceNodes. In the C header file, they follow a comment reading SZL file reading routines.
The header files are the authoritative reference to the API.

There are more than a hundred individual functions in the SZL reading API, but don’t let that
intimidate you. Nearly all map to specific Tecplot data objects or to specific fields within those objects.
All of the functions in the API use simple data types, or arrays of them. You can easily obtain only the
information your application is interested in by simply not calling API functions for data you don’t
need. Furthermore, if you are interested only in the data in the file and do not want to read, say,
geometries or text objects, you will not ever need to call a substantial number of functions.

For example, there is a group of four functions related to getting information about an arrowhead
attached to a line geometry: one to get its angle, one to get its attachment (i.e., which ends of the line
segment have an arrowhead), one to get its size, and one to get its style. These functions all have names
beginning with tecGeomArrowhead, so it is easy to find them when you want to obtain arrowhead details.
But if you are not interested in arrowheads, you can ignore them entirely.

You may want to develop an object-oriented layer on top of the TecIO API to better interface with your
application. Since each application’s needs are different, we leave this to you. If you come up with
something generally useful, we encourage you to make it available to others.

Passing Arguments and Receiving Values

Nearly all SZL reading functions pass one or more values back to the caller through output arguments
in each function’s argument list rather than using return values. The output arguments are pointers or
references to the caller’s variable in which the returned data should be stored. Each function in the
API gets one data item from the file, so in most cases there is only one output parameter. An exception
to this rule is made for sizes of shapes (which are passed back as separate length and width values

199

mailto:support@tecplot.com


from functions such as tecGeomRectangleGetSize) and coordinates (which are passed back as separate X,
Y, and Z values from, for example, tecTextGetAnchorPos). If you need one of these related values, you
will almost always need all of them, and you shouldn’t need to call two or three separate function calls
to do the job!

Many integer values in the API represent not numbers but rather enumerations specific to Tecplot
products. For example, tecGeomGetLinePattern returns an integer representing the line pattern, where
each value has a specific meaning. The values for such fields are the same as those used in the classic
binary file writing API described in Binary Data and are documented in Meaningful Integer Values.

Indexing and Zero Values

All indexing in Tecplot data files (including zones and variables) is 1-based, so the last index is exactly
equal to (not one less than) the count of the element type. An exception is nodes in finite-element
zones, which can be specified to be zero-based. C and C++ programmers in particular should be wary
of off-by-one errors when dealing with Tecplot data.

Zero is used in some functions to indicate the lack of a value; for example, if a geometry has no zone,
tecGeomGetZone passes back 0 for that zone.

Errors

With only two exceptions, return values in the API are used exclusively to indicate success or failure.
Functions return zero on success and non-zero on failure.

Errors are often caused by asking for a data element that does not exist (for example, zone 10 in a file
that contains only nine zones). This may be avoided by using the provided GetNum functions (such as
tecDataSetGetNumZones) to determine how many items (in this case, zones) exist before attempting to
retrieve them.

Another potential error is calling a function to get attributes of a geometry object when that geometry
is not of the proper type (for example, trying to get the radius of a square). Be sure to check the
geometry’s type before getting its attributes.

Errors may also indicate a corrupted or truncated file due to a file transfer error, insufficient available
memory, or a programming error such as an invalid pointer.

Once a file has been opened successfully, and reading is underway, it is generally best to advise users
of an error condition, but offer to continue trying to read additional items from the file if this is at all
possible.

API Overview
The 100+ functions of the TecIO SZL reading API are divided into the following broad categories. (Some
functions are shown here in more than one category to make it easier to find the one you need.) In
some cases, we have divided larger categories into subcategories as well.

200



• Files and Data Sets

• Geometries

• Text

• Custom Label Sets

• Strings

• Auxiliary Data

• Variables

• Zones

• Connectivity

• Data Values

Functions are generally listed alphabetically, except in cases where you are likely to need a particular
function first. For example, when reading text objects from a file, you will need to know how many
there are before you can read any of them, so tecTextGetNumTexts is listed first.

Files and Data Sets

These functions open and close files and provide information about the data sets in open files. See
Opening and Closing Files for details.

Function Input Output

tecFileReaderOpen Filename File Handle

tecFileReaderClose File Handle None

tecFileGetType File Handle File Type

tecDataSetGetTitle File Handle Title

tecDataSetGetNumVars File Handle Count of Variables in Data Set

tecDataSetGetNumZones File Handle Count of Zones in Data Set

tecDataSetAuxDataGetN
umItems

File Handle Count of Data Set Auxiliary Data Items

tecDataSetAuxDataGetIt
em

File Handle,
Auxiliary Data Item
Index

Name and Value of specified Data Set Auxiliary
Data Item

Geometries

These functions read geometries (that is, shapes) from the data file. See Reading Geometry and Text for
details.

The following functions are used with all types of geometries.

201



Function Input Output

tecGeomGetNumGeoms File Handle Count of Geometries in Data Set

tecGeomGetType File Handle, Geometry Index Geometry Type

tecGeomGetAnchorPos File Handle, Geometry Index X, Y, and Z coordinates

tecGeomGetClipping File Handle, Geometry Index Clipping

tecGeomGetColor File Handle, Geometry Index Color

tecGeomGetCoordMode File Handle, Geometry Index Coordinate Mode

tecGeomGetFillColor File Handle, Geometry Index Color

tecGeomGetLinePattern File Handle, Geometry Index Line Pattern

tecGeomGetLineThickness File Handle, Geometry Index Thickness

tecGeomGetMacroFunctionCmd File Handle, Geometry Index Name of Attached Macro
Function

tecGeomGetPatternLength File Handle, Geometry Index Pattern Length

tecGeomGetScope File Handle, Geometry Index Scope

tecGeomGetZone File Handle, Geometry Index Zone Index

tecGeomIsAttached File Handle, Geometry Index Boolean

tecGeomIsFilled File Handle, Geometry Index Boolean

Line Segments

The following functions are used with line segments (polylines) and the arrowheads optionally
attached to them.

Function Input Output

tecGeomLineGetSegmentCount File Handle, Geometry Index Count of Line Segments in
Geometry

tecGeomLineSegmentGetPointCo
unt

File Handle, Geometry Index,
Line Segment Index

Count of Points in Line Segment

tecGeomLineGetPoint File Handle, Geometry Index,
Line Segment Index, Point Index

X, Y, and Z coordinates

tecGeomArrowheadGetAngle File Handle, Geometry Index Arrowhead Angle

tecGeomArrowheadGetAttach File Handle, Geometry Index Arrowhead Attachment

tecGeomArrowheadGetSize File Handle, Geometry Index Arrowhead Size

tecGeomArrowheadGetStyle File Handle, Geometry Index Arrowhead Style

202



Other Shapes

The following functions are used with other shapes.

Function Input Output

tecGeomRectangleGetSize File Handle, Geometry Index Width and Height

tecGeomSquareGetSize File Handle, Geometry Index Size (i.e., Width/Height are same)

tecGeomCircleGetRadius File Handle, Geometry Index Radius

tecGeomEllipseGetNumPoints File Handle, Geometry Index Count of Points in Ellipse

tecGeomEllipseGetSize File Handle, Geometry Index Width and Height

Text

The following functions read text objects and their attributes from a data set. See Reading Geometry
and Text for details.

Function Input Output

tecTextGetNumTexts File Handle Count of Text Objects

tecTextGetAnchor File Handle, Text Index Text Anchor

tecTextGetAnchorPos File Handle, Text Index X, Y, and Z Coordinates

tecTextGetAngle File Handle, Text Index Angle

tecTextGetClipping File Handle, Text Index Clipping

tecTextGetColor File Handle, Text Index Color

tecTextGetCoordMode File Handle, Text Index Coordinate Mode

tecTextGetHeight File Handle, Text Index Height

tecTextGetLineSpacing File Handle, Text Index Line Spacing

tecTextGetMacroFunctionCmd File Handle, Text Index Name of Attached Macro
Function

tecTextGetScope File Handle, Text Index Scope

tecTextGetSizeUnits File Handle, Text Index Text Size Units

tecTextGetString File Handle, Text Index Text String

tecTextGetTypeface File Handle, Text Index Typeface/Font

tecTextGetZone File Handle, Text Index Zone Index

tecTextIsAttached File Handle, Text Index Boolean

tecTextIsBold File Handle, Text Index Boolean

tecTextIsItalic File Handle, Text Index Boolean

203



Text Box

The following functions read attributes of text boxes, which provide backgrounds and borders around
text objects. Each text box is associated with one text item.

Function Input Output

tecTextBoxGetColor File Handle, Text Index Color

tecTextBoxGetFillColor File Handle, Text Index Color

tecTextBoxGetLineThickness File Handle, Text Index Line Thickness

tecTextBoxGetMargin File Handle, Text Index Margin

tecTextBoxGetType File Handle, Text Index Text Box Type

Custom Label Sets

The following functions read custom labels, which can be used for axis labels, legend text, and tick
mark labels. Each custom label set is a string containing quoted label items separated by commas or
spaces. See Reading Custom Labels for details.

Function Input Output

tecCustomLabelsGetNumSets File Handle Count of Custom Label Sets

tecCustomLabelsGetSet File Handle,
Custom Label Set Index

Custom Label Set (A single
string containing quoted labels
separated by spaces or commas)

Strings

Strings are UTF-8 encoded and null-terminated. When a string is passed back to your application by the
a SZL reader function, the memory in which it resides is owned by the TecIO library and should be
freed when you are done with it. See Dealing with Strings for details.

Function Input Output

tecStringLength Pointer to String Length it Bytes

tecStringFree Pointer to String None

Auxiliary Data

Auxiliary data records can be attached to three objects in a Tecplot file: the data set itself, a zone, and a
variable. Each record is a name-value pair. See Reading Auxiliary Data for details.

The following functions are used to read auxiliary data items.

204



Function Input Output

tecDataSetAuxDataGetNumItems File Handle Count of Data Set Auxiliary Data
Items

tecDataSetAuxDataGetItem File Handle, Auxiliary
Data Item Index

Name and Value of specified
Data Set Auxiliary Data Item

tecVarAuxDataGetNumItems File Handle, Variable Index Count of Variable Auxiliary Data
Items

tecVarAuxDataGetItem File Handle, Variable Index,
Auxiliary Data Item Index

Name and Value of specified
Variable Auxiliary Data Item

tecZoneAuxDataGetNumItems File Handle, Zone Index Count of Zone Auxiliary Data
Items

tecZoneAuxDataGetItem File Handle, Zone Index,
Auxiliary Data Item Index

Name and Value of specified
Zone Auxiliary Data Item

Variables

Variables are named collections of values with a data type and value location. The following functions
retrieve information about variables. See Reading Data for details.

Function Input Output

tecDataSetGetNumVars File Handle Count of Variables in Data Set

tecVarGetName File Handle,
Variable Index

Variable Name

tecVarIsEnabled File Handle,
Variable Index

Boolean

tecZoneVarGetType File Handle, Zone
Index, Variable Index

Data Type

tecZoneVarGetValueLocation File Handle, Zone
Index, Variable Index

Value Location

tecZoneVarIsPassive File Handle, Zone
Index, Variable Index

Boolean

tecZoneVarGetSharedZone File Handle, Zone
Index, Variable Index

Shared Zone Index (0 if none)

tecVarAuxDataGetNumItems File Handle,
Variable Index

Count of Variable Auxiliary Data
Items

tecVarAuxDataGetItem File Handle,
Variable Index,
Auxiliary Data Item Index

Name and Value of specified
Variable Auxiliary Data Item

205



Zones

Zones are used to organize data spatially, chronologically, or by some other characteristic. These
functions get information about zones. See Reading Data for details.

Function Input Output

tecDataSetGetNumZones File Handle Count of Zones in Data Set

tecZoneGetTitle File Handle, Zone Index Zone Title

tecZoneGetType File Handle, Zone Index Zone Type

tecZoneIsEnabled File Handle, Zone Index Boolean

tecZoneGetIJK File Handle, Zone Index I, J, K extent of Specified Zone for
ordered zoness number of points
and elements for FE zones (see
Reading Data)

tecZoneGetNumSections File Handle, Zone Index Number of sections in Specified
Zone for FE zones of
ZoneType_FEMixed (see Reading
Data)

tecZoneGetSectionMetrics File Handle, Zone Index, Section
Index

CellShape, GridOrder,
BasisFunction,
NumElemsInSection, and
NunNodesPerCell for Secified
Section of Specified FEMixed
Zone (see Reading Data)

tecZoneGetSolutionTime File Handle, Zone Index Solution Time

tecZoneGetStrandID File Handle, Zone Index Strand ID

tecZoneVarGetType File Handle, Zone Index,
Variable Index

Data Type

tecZoneVarGetValueLocation File Handle, Zone Index,
Variable Index

Value Location

tecZoneVarIsPassive File Handle, Zone Index,
Variable Index

Boolean

tecZoneVarGetSharedZone File Handle, Zone Index,
Variable Index

Shared Zone Index (0 if none)

tecZoneConnectivityGetSharedZo
ne

File Handle, Zone Index,
Variable Index

Shared Zone Index (0 if none)

tecZoneAuxDataGetNumItems File Handle, Zone Index Count of Zone Auxiliary Data
Items

206



Function Input Output

tecZoneAuxDataGetItem File Handle, Zone Index,
Auxiliary Data Item Index

Name and Value of specified
Zone Auxiliary Data Item

Connectivity

Connectivity refers to how the nodes and cells in finite element zones are connected and encompasses
the node map and face neighbors. See Reading Connectivity Data for details.

Node Map

The following functions are used to read the node map from finite element zones. The node map
indicates which nodes are part of which elements.

Function Input Output

tecZoneNodeMapIs64Bit File Handle, Zone Index Boolean

tecZoneNodeMapGetNumValues File Handle, Zone Index,
Number of Cells

Count of Node Map Values for
the specified Number of Cells

tecZoneNodeMapGet File Handle, Zone Index Array of Node Map Values

tecZoneNodeMapGet64 File Handle, Zone Index Array of Node Map Values

tecZoneSectionNodeMapGetNum
Values

File Handle, Zone Index, Section
Index

Count of Node Map Values for
the specified Section and
Number of Cells

Face Neighbors

The following functions read face neighbor data, which indicates which elements are adjacent.

Function Input Output

tecZoneFaceNbrGetMode File Handle, Zone Index Face Neighbor Mode

tecZoneFaceNbrGetNumValues File Handle, Zone Index Count of Face Neighbor Values

tecZoneFaceNbrsAre64Bit File Handle, Zone Index Boolean

tecZoneFaceNbrGetConnections File Handle, Zone Index Array of Face Neighbor
Connections

tecZoneFaceNbrGetConnections6
4

File Handle, Zone Index Array of Face Neighbor
Connections

The connectivity functions below are not currently implemented because they apply to face-based
(polygonal/polyhedral) zones, which SZL files cannot currently contain. They are provided so that the
interface does not need to be changed when this capability is implemented.

207



• tecZonePolyGetBoundaryConnectionCounts

• tecZonePolyGetBoundaryConnections

• tecZonePolyGetFaceElems

• tecZonePolyGetFaceNodeCounts

• tecZonePolyGetFaceNodes

• tecZonePolyGetNumConnectedBoundaryFaces

• tecZonePolyGetTotalNumFaceNodes

• tecZonePolyGetTotalNumBoundaryConnections

Data Values

SZL files can contain IJK indexed data and classic finite-element (FE) volume data. The following
functions are used to read data values from all types of zones. See Accessing Data Values for more
details.

Function Input Output

tecZoneVarGetNumValues File Handle, Zone Index,
Variable Index

Count of Values in Variable for
Specified Zone

tecZoneVarGetDoubleValues File Handle, Zone Index,
Variable Index, Start Index,
Number of Values

Array of Data Values

tecZoneVarGetFloatValues File Handle, Zone Index,
Variable Index, Start Index,
Number of Values

Array of Data Values

tecZoneVarGetInt16Values File Handle, Zone Index,
Variable Index, Start Index,
Number of Values

Array of Data Values

tecZoneVarGetInt32Values File Handle, Zone Index,
Variable Index, Start Index,
Number of Values

Array of Data Values

tecZoneVarGetUint8Values File Handle, Zone Index,
Variable Index, Start Index,
Number of Values

Array of Data Values

Opening and Closing Files
The functions tecFileReaderOpen and tecFileReaderClose are used to open and close files.
tecFileReaderOpen passes back a file handle—a pointer to a data structure internal to the library that
you should treat as opaque. This handle is a required parameter to virtually all other functions in the

208



SZL reading API.

It is possible to open more than one file at a time, passing the handle for the specific file you want to
read when requesting data elements from it. The number of simultaneously open files is limited only
by memory and/or the underlying operating system.

You should close files when you are done reading them. However, it is fine to leave a file open for a
long time (for example, while a user works with the data in it in an interactive fashion). If your
program is terminating for whatever reason, it is not strictly necessary to close open SZL files; the
operating system will do it for you. It is not possible to lose data in this scenario, as the SZL reading API
does not write to any files.

Unlike the close function in many APIs, tecFileReaderClose requires that you pass in a pointer to the
variable where you originally stored the file handle when you called tecFileReaderOpen, not the file
handle itself. TecIO will store a null pointer in this variable to help make sure you do not try to use the
file handle again after closing the file. (This is necessary because file handles are guaranteed unique
only as long as the file is open. Two files open at different times might end up with the same handle.)

After opening the file, you can get useful basic information about the dataset within it using the
following informational functions:

• tecDataSetGetTitle - title of data set

• tecDataSetGetNumVars - number of variables

• tecDataSetGetNumZones - number of zones

• tecFileGetType - whether the file contains a grid, a solution, or both

Dealing with Strings
Strings (for example, zone names, variable names, auxiliary data, and the text contained by text
objects) are C-style zero-terminated character (i.e., unsigned byte) arrays using UTF-8 encoding. The
string itself is held in memory that belongs to the TecIO library, and you receive a pointer to it. You
should not modify this memory, but it is suitable for read-only uses such as printing. If you wish to
manipulate the string or keep your own copy of it, you should copy it to memory allocated and owned
by your application.

The function tecStringLength is provided to obtain the length of a string. You should use this in place of
e.g. strlen since it checks the validity of the pointer before getting the length. It returns -1 if the pointer
is not valid (that is, if it is null). Note that this returns the length of the string in bytes, not in characters;
some characters in the UTF-8 encoding require multiple bytes. Decode the string to an internal Unicode
representation if you need to know how many characters (code points) it contains.

Call tecStringFree when you are done with the string to inform the TecIO library that you no longer
need access to it. Failure to do so may result in unneecssary memory usage, as the memory used for a
zone or variable cannot be reused while any references to its contents are outstanding.

209



The following C++ code fragment illustrates how to obtain the title of a dataset.

   char* dataSetTitle = NULL;
   err = tecDataSetGetTitle(fileHandle, &dataSetTitle);
   /* Do something with dataSetTitle */
   tecStringFree(&dataSetTitle);

Below is an equivalent fragment in FORTRAN.

   type(c_ptr) :: fileHandle = C_NULL_PTR
   type(c_ptr) :: stringCPtr = C_NULL_PTR
   character(256) dataSetTitle, zoneTitle
   INTEGER(4) zone

   i = tecDataSetGetTitle(fileHandle, stringCPtr)
   call copyCharArrayToString(stringCPtr, tecStringLength(stringCPtr), dataSetTitle)
! Do something with dataSetTitle ...
   call tecStringFree(stringCPtr)

There are no functions in the API that accept strings as inputs aside from tecStringFree.

Reading Data
SZL files can contain classic (cell-based) finite element and IJK-ordered zones. Currently, SZL files
cannot contain face-based polygonal or polyhedral data1. Before reading data, you will want to find out
the following:

• The number of variables. API: tecDataSetGetNumVars

• The number of zones. API: tecDataSetGetNumZones

• The indexes of the zone(s) and variable(s) you are interested in, if you do not want all variables.
There are no API functions to locate a zone or variable by name; instead, iterate over all zones and
variables, get the name of each, see if it’s one you want, and remember its index (e.g. in a vector) if
so. API: tecZoneGetTitle, tecVarGetName

1. The TecIO SZL reading API includes stubs for the functions necessary to read face-based zones, so that if and when the feature is
supported in the future, we do not need to change the API. However, you will find no reason to call them at this point.

For each zone and variable to be read, you will want to find out:

• The dimensions of the zone. You use one function, tecZoneGetIJK, to retrieve this information
regardless of the zone type. For IJK-ordered zones, this call provides the maximum value of the I, J,
and K indices (some of these will be 1 if the zone has fewer than three dimensions). For classic (cell-
based) FE zones, it provides the number of points as I and the number of elements as J; K is not
used and will receive 0.

210



• Information about the zone: type, solution time, parent zone, time strand, and whether it is enabled
or disabled. If your zone is of type FEMixed it may be composed of multiple sections with different
cell shapes, grid-orders (>1 is a higher-order element), basis functions and number of nodes per
cell. Your application may not need all of this information, so you may skip some of these calls. API:
tecZoneGetType, tecZoneGetSolutionTime, tecZoneGetStrandID, tecZoneIsEnabled, tecZoneNumSections,
tecZoneGetSectionMetrics.

• Information about the variable: whether it is enabled or not, its type, value location (nodal or cell-
centered), whether it is shared, and whether it is passive. Much of this information is with respect
to a specific zone. Again, you may skip any calls for information your application does not need.
API: tecVarIsEnabled, tecZoneVarGetType, tecZoneVarGetValueLocation, tecZoneVarGetSharedZone,
tecZoneVarIsPassive.

Note that the variable may be shared from another zone, in which case you should prepare to read
the variable from that zone if it is not already in memory, or copy or store a reference to its data if
it has already been loaded.

Variables that are not used in a particular zone may be marked as passive. In this case, no data is
stored in the file for the variable, and zero will be returned for every location.

• The number of values. This will tell you how many elements you need to allocate to read the entire
variable into memory. (The type of the variable implies how many bytes you need per element.)
API: tecZoneVarGetNumValues

After determining the dimensions and type, you can allocate memory for the data and read the values
using one of the tecZoneVarGetValues functions: tecZoneVarGetDoubleValues, tecZoneVarGetFloatValues,
tecZoneVarGetInt16Values, tecZoneVarGetInt32Values, or tecZoneVarGetUint8Values, depending on the
type of the variable.

The TecIO library does not require that you read all the values in a zone’s variable at once—or for that
matter, at all. All of the tecZoneVarGetValues functions include two parameters, startIndex and
numValues, that let you indicate where to start and how many values you want to receive. (Like all
indexes in the TecIO library, startIndex is 1-based: the first element is index 1.) You may read a zone in
chunks by varying these parameters from call to call.

Even though the actual zone may have 1, 2, or 3 dimensions, the values array is one-dimensional. It is
up to your application to find the index of the desired node or cell. More on this in Accessing Data
Values.

Reading Connectivity Data

Classic FE (cell-based) zones also include node map and face neighbor information (collectively called
the zone’s connectivity) to tell you which nodes belong to which cell and which cells are adjacent. Cells
are considered adjacent (connected, or neighbors) if one of their faces’ nodes consist of exactly the
same points as the nodes of a face of another cell. The nodemap is an array specifying the nodes that
constitute each cell. Face neighbors are the faces that are shared between cells.

211



When loading data, Tecplot 360 or Tecplot Focus automatically detects which cells share faces based on
the IJK indexing of the cells (for indexed zones) or the entries in the node map (for finite element
zones). You should be prepared to do the same if you need this information. Additional face neighbors
that cannot be detected in this way can be specified separately in the file, so you should also be
prepared to read this data if needed.

Connectivity data is stored per zone and so does not need to be re-read for every variable in the zone.
Like variables, connectivity can be, and often is, shared among zones. Call
tecZoneConnectivityGetSharedZone to find out which zone holds the connectivity data for the zone of
interest; this will be zero if the zone has its own connectivity information. If the zone uses another
zone’s connectivity data, you will want to read it from that zone if it is not already in memory, or use a
pointer or a copy of the data if it has already been loaded. You will need to keep the node map on hand
in order to find the nodes of each cell.

Most applications will need to read the nodemap. To do this:

• Call tecZoneNodeMapIs64Bit to find out if the node map entries are 64-bit or 32-bit.

• Call tecZoneNodeMapGetNumValues to find out how many entries are in the node map, or
tecZoneSectionNodeMapGetNumValues to find out how many entries are in the node map for a Section
of an FEMixed zone.

• Using the information from these two calls, allocate the memory to read the node map.

• Finally, call either tecZoneNodeMapGet or tecZoneNodeMapGet64 depending on the result of
TecZoneNodeMapIs64Bit to actually read the nodemap.

Your application may not need the face neighbor data. If you need it, the process is similar:

• Call tecZoneFaceNbrsAre64Bit to find out if the face neighbor entries are 64-bit or 32-bit.

• Call tecZoneFaceNbrGetMode to get the face neighbor mode for the zone. This will determine how
many entries in the face neighbor array there are for each cell (see the output function TECFACE142
for a discussion).

• Call tecZoneFaceNbrGetNumValues to get the total number of face neighbor entries.

• Use this information to calculate how much memory is needed to load the face neighbor data and
allocate it.

• Finally, call tecZoneFaceNbrGetConnections or tecZoneFaceNbrGetConnections64 to read the face
neighbors.

Accessing Data Values

Accessing data from a variable in an IJK-ordered zone is straightforward. Although stored and
delivered via a one-dimensional array, the values read can represent a 1, 2, or 3-dimensional array,
with the I-index varying the fastest and the K index the slowest. It is possible to write a generic
function to retrieve the desired value based on its I, J, and K indexes, since tecZoneGetIJK returns 1 for
a dimension that is not used. For example, if I, J, and K are the (1-based) indexes of the desired value,

212



you can get the index of the element in the values array with the following formula:

C/C++ (zero-based): I-1 + (J-1) * IMax + (K-1) * IMax * JMax

FORTRAN (one-based): I + (J-1) * IMax + (K-1) * IMax * JMax

In one way, accessing data from a classic finite-element (cell-based) zone is more straightforward than
accessing data in an ordered zone, but it is more complicated in other ways. The variable values read
from the file are a one-dimensional array of the values corresponding to the cells (for cell-centered
data) or the nodes (for nodal data) in the variable. So if you know the cell or node number, it is simple
to obtain the corresponding data from a variable that is cell-centered or nodal, respectively.

If you have a cell number, but the data is nodal, you will need to first access the nodemap to see what
nodes make up the desired cell, then get the data at those nodes, perhaps averaging it to a single value.

Conversely, if you have a node number, but the data is cell-centered, you need to determine what cells
the node is a part of, which requires searching the nodemap for those cells and noting the indexes of
the nodes in which it participates. If the node map needs to be searched repeatedly, you may want to
create an inverse map and access the cells through that, as this will yield better performance.

Accessing FE data by its spatial coordinates will require finding the node or cell closest to the desired
point based on the X, Y, and Z variables, which define the geometry of the zone.

Reading Auxiliary Data
Tecplot data files can store named values referred to as auxiliary data. Auxiliary data is often used to
store metadata about a dataset or to hold the results of aggregate calculations such as overall lift or
maximum and minimum pressure. In Tecplot data files, auxiliary data can be attached at three points:
the dataset itself, the zone, and the variable. Each dataset, zone, or variable may have any number of
auxiliary data records attached. Reading each type is straightforward and very similar:

• Obtain the number of items of the desired type using tecDataSetAuxDataGetNumItems,
tecZoneAuxDataGetNumItems, or tecVarAuxDataGetNumItems.

Zone and variable aux data is attached to specific zones or variables, and you must specify the
index of the zone or variable of interest in the corresponding function calls.

• For each auxiliary data item, call tecDataSetAuxDataGetItem, or tecZoneAuxDataGetItem,
tecVarAuxDataGetItem to get the item’s name and value.

Both name and value are strings; remember to free the strings when you are done with them (see
Dealing with Strings).

As with zones and variables, you cannot access auxiliary data records by name. If you are looking for a
particular record, you must check the name of each record of the desired type to see if it is the one you
want. Records may be in any order, so it may be necessary to look at them all.

213



Auxiliary data values may represent numeric quantities or, for example, a comma-separated list of
values or other record-style data. These are still returned as strings; you must convert or parse them
yourself.

Reading Geometry and Text
Tecplot data files may contain line segments (actually, collections of linked line segments called
polylines, though the API calls them just lines) circles, ellipses, squares, rectangles, and text objects.
Collectively, they are referred to as geometries.

In most cases geometry has been added to aid in the understanding of the data by human beings; these
shapes are not, strictly speaking, part of the data, and many applications can ignore them. But shapes
can also be used to indicate areas of interest within a data set for further processing by software.

Tecplot data files may also contain text objects. Again, in most cases this is annotation for humans who
will be viewing the data, but might also be used to hold further processing instructions that will be
used by software. (In most cases it would be better to use auxiliary data for this, however.)

There are two sets of functions involved in reading geometries. One set applies to all kinds of
geometries and are used to get general information about the geometry: its type, its scope, its
coordinate mode, its fill color, its line characteristics (color, thickness, pattern), its anchor point, and so
on. The other set applies to the special characteristics of specific types of geometries. For example, lines
have segments and so there is tecGeomLineGetSegmentCount to get the number of segments,
tecGeomLineSegmentGetPointCount to get the number of points in each segment, and tecGeomLineGetPoint
to get each individual point.

Reading text is similar; the tecText functions are used to obtain characteristics of text objects, starting
with the number of text objects (tecTextGetNumTexts) and proceeding to read the characteristics of
specific text objects. While text objects have some things in common with geometries, they are
sufficiently different that they are not classified as geometry objects inside Tecplot data files. If you are
interested only in text objects, you do not have to iterate over all geometries to determine which are
text objects.

Reading Custom Labels
Custom labels can be used for axis labels, legend text, and tick mark labels. Most applications will not
need to read this data.

The first label in a label set corresponds to a value of one on the axis, the next to a value of two, the
next to a value of three, and so forth. You can get the number of custom label sets using
tecCustomLabelsGetNumSets and retrieve each set with tecCustomLabelsGetSet. Each set is passed back as
a single string containing the labels enclosed in double quote marks. The quoted labels may be
separated by spaces or commas.

214



Example Code
The rewriteszl example is a simple program that reads a SZL data file using the TecIO SZL reading API
and writes it to a new SZL file using the new SZL writing API (see Writing SZL Data Files (New API)).
The resulting file is functionally equivalent to the original, though it may not be identical at the binary
level.

As such, the code illustrates reading every kind of data that can be stored in a SZL file. It also prints
information about each data object as it is read, which may make it helpful as a diagnostic tool. This
example is provided in both C++ (.cpp) and FORTRAN (.F, .f90) versions. Visual Studio solution files
are also provided.

Writing SZL Data Files (New API)
Tecplot 360 and Tecplot Focus 2017 R2 introduce a new TecIO API for writing SZL (.szplt) data. This
new API has a more flexible calling order, making it easier to write your data as you have it, instead of
having to hold on to it and deliver it all at once to the library. Additionally, the new API brings:

• 64-bit indexing for support of zones with more than two billion nodes.

• Support for integer data types of various sizes in addition to floating-point types.

• The ability to open any number of files for writing simultaneously.

The new API does not currently support writing Tecplot .plt files, although we are considering adding
this capability in the future. For now, .plt files can written using the classic API (see Binary Data),
which will continue to be available indefinitely, and the classic API will also continue to be able to
output .szplt files if your application already uses it for this purpose.

However, for new development, we encourage you to use the new API. This API is where Tecplot will
be focusing TecIO development efforts going forward, and we plan several important improvements in
upcoming releases.

Tecplot is keenly interested in your experiences with this API. Please contact support@tecplot.com with
your questions or feedback.

Getting Started with the API
All the functions you use to write SZL files are declared in TECIO.h (C or C++ programmers) or in
tecio.for or tecio.f90 (FORTRAN programmers) along with the other TecIO functions. The names of
the functions start with tec (lower-case) and mostly include write, set, create, or add, for example
tecDataSetAddAuxData. In the C header file, they follow a comment reading New TecIO output routines.
The header files are the authoritative reference to the API.

There are more than sixty individual functions in the new writing API, but about half have to do with
geometries or text objects. Most applications will write only data and, potentially, auxiliary data, and

215

mailto:support@tecplot.com


will not ever need to call a substantial number of functions.

Also, there are a handful of functions dealing with polytope (face-based) zones, which .szplt files
cannot currently contain and which you will therefore not have occasion to call at this time. A solver
that writes only a single type of zone might need just a dozen or so API functions.

Passing Arguments and Receiving Values

Scalar values (i.e., single integers) are passed by value. Other data types, such as strings and arrays of
data elements, are passed by reference. (FORTRAN programmers need not worry about this detail.)

As this is a writing API, most functions do not need to pass any data back to the caller. For the rare
function that gives data to the caller, an output argument (i.e., a pointer to memory owned by your
application) is used. For example, tecFileWriterOpen passes back the file handle of the opened file using
a pointer to a memory space you provide; the tecZoneCreate functions pass back the index of the new
zone.

Many integer values in the API represent not numbers but rather enumerations specific to Tecplot
products. For example, tecGeomSetLineInfo requires an integer representing the line pattern, where
each value has a specific meaning. The values for such fields are the same as those used in the classic
binary file writing API described in Binary Data and are documented in Meaningful Integer Values.

Indexing and Zero Values

By default, indexing in Tecplot data files (including zones and variables) is 1-based, so the last index is
exactly equal to (not one less than) the count of the element type. An exception is nodes in finite-
element zones, which can be specified to be zero-based. C and C++ programmers in particular should
be wary of off-by-one errors when writing Tecplot data.

Zero is used in some functions to indicate the lack of a value; for example, if a zone is not partitioned,
you pass zero as the Partition argument to tecZoneVarWriteDoubleValues.

Return Values and Errors

Return values in the API are used exclusively to indicate success or failure. Functions return zero on
success and non-zero on failure.

Errors are often caused by file system or disk issues, such as insufficient space, or a programming
error, such as calling a function before its prerequisite (e.g. trying to write data to a zone that hasn’t
yet been created).

Programming errors aside, if a TecIO function error occurs when writing a data file, writing cannot
proceed further and should be aborted. You should attempt to close the file by calling
tecFileWriterClose, but even if closing the file succeeds, the file may be in an incomplete state and may
not be readable. You may offer to delete the file in this case, or leave this task for the user.

216



API Overview
The functions of the new TecIO writing API are divided into the following broad categories. Some
functions are shown here in more than one category to make it easier to find the one you need.

• Initialization and File Handling

• Auxiliary Data

• Zones, Variables, and Data

• Partitioning and MPI

• Connectivity

Functions are generally listed alphabetically, except in cases where you will usually need a particular
function first, or when two functions are closely related.

Initialization and File Handling

These functions open and close files, add top-level data elements such as auxiliary data and custom
label sets, and initialize MPI. See Opening and Closing Files for details.

Function Arguments

tecFileWriterOpen Filename, Data Set Title, List of Variablesa, File Formatb, File Type, Default
Data Typec, Grid File Handled, File Handlee

tecFileWriterClose File Handle

tecMPIInitialize File Handle, MPI Communicator, Main Rank

tecDataSetAddAuxData File Handle, Name, Value

a. A single string containing unquoted variable names separated by commas.
b. Currently, the new API supports only SZL (.szplt) files.
c. Use zero for the default data type. You must specify the data type for each variable when creating zones anyway.
d. From a previous call to tecFileWriterOpen that opened a grid file.
e. Output parameter that receives the new file’s file handle.

Auxiliary Data

Auxiliary data records can be attached to three objects in a Tecplot file: the data set itself, a zone, and a
variable. Each record is a name-value pair; both names and values are strings. The following functions
are used to write auxiliary data items.

Function Arguments

tecDataSetAddAuxData File Handle, Name, Value

tecVarAddAuxData File Handle, Variable Index, Name, Value

tecZoneAddAuxData File Handle, Zone Index, Name, Value

217



Zones, Variables, and Data

Zones are used to organize data spatially, chronologically, or by some other characteristic. Variables
are named collections of values with a data type and value location. These functions create zones and
write variable values to zones. See Writing Data for details.


The TecIO API includes functions for writing face-based or "poly"
(polygonal/polyhedral) zones. Currently, SZL files cannot contain such zones, so they
are not implemented and are not documented here.

Function Arguments

tecZoneCreateIJKa File Handle, Zone Title, I Max, J Max, K Max,
Variable Data Typesb, Variable Sharing Source
Zones, Value Locations, Passive Variables, Face
Neighbor Sharing Source Zone, Number of Face
Connections, Face Neighbor Mode, Zone Indexc

tecZoneCreateFEd File Handle, Zone Title, Zone Type, Number of
Nodes, Number of Cells, Variable Data Typee,
Variable Sharing Source Zones, Value Locations,
Passive Variables, Connectivity Sharing Source
Zone, Number of Face Connections, Face Neighbor
Mode, Zone Indexf

tecZoneCreateFEMixed File Handle, Zone Title, Number of Nodes, Number
of Sections, Cell Shape per Section, Grid Order per
Section, Basis Function per Section, Number of
Elements per Section, Variable Data Types,
Variable Sharing Source Zones, Value Locations,
Passive Variables, Connectivity Sharing Source
Zone, Number of Face Neighbor Connections, Face
Neighbor Mode, Zone Index

tecZoneSetUnsteadyOptions File Handle, Zone Index, Solution Time, Strand ID

tecFileWriterFlush File Handleg, Number of Zones to Retain, Zones to
Retain

tecZoneMapPartitionsToMPIRanksh File Handle, Zone Index, Number of Partitions,
Ranks for Partitions

tecZoneVarWriteDoubleValuesi

tecZoneVarWriteFloatValues
tecZoneVarWriteInt32Values
tecZoneVarWriteInt16Values
TecZoneVarWriteUint8Values

File Handle, Zone Index, Variable Index, Partition
Index, Number of Values, Array of Values

a. Variable Data Types, Variable Sharing Source Zones, Value Locations, and Passive Variables are integer arrays holding an element for

218



each variable, containing the specified argument value for the corresponding variable index.
b. Pass null for this parameter to use the default data type for all variables in the zone.
c. Output parameter that receives the index of the new zone.
d. See footnote a.
e. See footnote b.
f. See footnote c.
g. tecFileWriterFlush is identical to old API call (TECFLUSH142).
h. TecIO-MPI only.
i. These functions work the same; the only difference is the data type of the value array.

Partitioning and MPI

TecIO can subdivide zones, allowing each partition of a zone to be written independently (for example,
by another thread, or by another process in the MPI-enabled version of TecIO). See Working With
Partitions.

Function Arguments

tecMPIInitializea File Handle, MPI Communicator, Main Rank

tecZoneMapPartitionsToMPIRanksa File Handle, Zone Index, Number of Partitions,
Ranks for Partitions

tecFEPartitionCreate32b

tecFEPartitionCreate64
File Handle, Zone Index, Partition Index, Number
of Nodes, Number of Cells, Number of Ghost
Nodes, Array of Ghost Node Indexes, Array of
Neighbor Partition Indexes, Array of Neighbor
Partition Node Indexes, Number of Ghost Cells,
Array of Ghost Cell Indexes

tecFEMixedPartitionCreate32b

tecFEMixedPartitionCreate64
File Handle, Zone Index, Partition Index, Number
of Nodes, Number of Cells per Section, Number of
Ghost Nodes, Array of Ghost Node Indexes, Array
of Neighbor Partition Indexes, Array of Neighbor
Partition Node Indexes, Number of Ghost Cells per
Section, Array of Ghost Cell Indexes

tecIJKPartitionCreate File Handle, Zone Index, Partition Index, I Min, J
Min, K Min, I Max, J Max, K Max

a. TecIO-MPI only.
b. These functions work the same way; the only difference is the size of the indexes.

Connectivity

Connectivity refers to how the nodes and cells in finite element zones are connected and encompasses
the node map and face neighbors.


The TecIO API includes functions for writing connectivity information for face-based
or "poly" (polygonal/polyhedral) zones. Currently, SZL files cannot contain such zones,

219



so these functions are not implemented and are not documented here.

Function Input

tecZoneNodeMapWrite32a

tecZoneNodeMapWrite64
File Handle, Zone Index, Partition Index, One-
Based Node Flag (Boolean), Node Count, Array of
Nodes

tecZoneFaceNbrWriteConnections32b

tecZoneFaceNbrWriteConnections64
File Handle, Zone Index, Array of Face Neighbors

a. These functions work the same way; the only difference is the size of the node indexes.
b. These functions work the same way; the only difference is the size of the face neighbor indexes.

Opening and Closing Files
The functions tecFileWriterOpen and tecFileWriterClose are used to open and close files.
tecFileWriterOpen passes back a file handle—a pointer to a data structure internal to the library that
you should treat as opaque. This handle is a required parameter to virtually all other functions in this
API.

You specify the data set’s title and the names of the variables it will contain when you open a file. You
also specify the default data type for variables stored in the file.

It is possible to open more than one file at a time, then pass the handle for the specific file you want to
write to each API function. The number of simultaneously open files is limited only by memory and/or
the underlying operating system.

A file may be a grid file, a solution file, or a single file containing both a grid and a solution. You specify
which kind of file you are writing using the File Type argument in the tecFileWriterOpen call. If writing
a solution file, you must specify the file handle of corresponding grid file, which must be data-complete
(but still open) before you write any solution files. Any number of solution files may use the same grid
file simultaneously; do not close the grid file until you have written all the solution files that use it. If
writing a grid file, or a single file containing both solution and grid, pass null for the grid file handle.

You must close files when you are done writing them to ensure all data is flushed to disk. Unlike the
close function in many APIs, tecFileWriterClose requires that you pass in a pointer to the variable
where you originally stored the file handle when you called tecFileWriterOpen, not the file handle itself.
TecIO will store a null pointer in this variable to help make sure you do not try to use the file handle
again after closing the file. (This is necessary because file handles are guaranteed unique only as long
as a file is open. Two files opened at different times might end up with the same handle.)

Working With Partitions
The TecIO library is available in two variants: TecIO, and TecIO-MPI. The two variants have nearly
identical APIs. However, TecIO-MPI uses the Message-Passing Interface (MPI) library to allow a file to

220



be written by multiple processes.

Zones may be partitioned. That is, the data does not need to be written by a single process, but can be
written in sections and the work divided among multiple processes. This capability is intended
primarily for use with CFD codes that compute large solutions in parallel, with multiple solver
processes running on independent nodes in a compute cluster, each solving a subset of the simulation.
However, this capability can also be used by a single-process solver running on a desktop workstation
if desired.



TecIO-MPI is required only for multi-processing applications. Partitioned zones may
still be written with the non-MPI TecIO variant, but they must be written by a single
application process. TecIO is not thread-safe, so writing must always be done by a
single thread—either the main thread, or a separate writing thread.

To use MPI with a given file, you must call tecMPIInitialize after opening the file but before writing to
it . This function tells TecIO which MPI communicator to use when writing the file, and which process
("rank," in MPI terms) is the main one. The main process is the only one that can write auxiliary data,
text, geometries, and custom labels.

Overlap and Ghosts

Partitioned solution of large CFD cases typically requires that zone partitions overlap slightly. That is,
the nodes or cells on the each side of the boundary between partitions will reside in more than one
solver process: in the one that "owns" it according to the partitioning rules, as well as in any processes
solving a partition spatially adjacent to it. In processes other than the one that "owns" them, such data
are commonly referred to as "ghost cells" and "ghost nodes."

The TecIO library needs information about these overlapping cells and nodes in order to later allow
the partitioned data to be joined into a single virtual data set suitable for visualization. For finite-
element zones, each solver process must pass a list of its ghost nodes and cells along with the zone data
(which should include the ghost nodes and cells). For ordered zones, the solver need pass only the
nodes owned by each process, as the indices of each partition are sufficient for later reassembling the
data.

Partitioning Zones

After creating a zone, you may partition it as follows.

• First, if you are using TecIO-MPI, call tecZoneMapPartitionsToMPIRanks to specify how many
partitions will be in the zone, and which MPI rank each partition belongs to. (This is not necessary
with non-MPI TecIO.)

• Then call tecFEPartitionCreate32, tecFEPartitionCreate64, or tecIJKPartitionCreate to create each
partition in the zone. For FE zones, these function calls specify the ghost cells and nodes.

When writing data, you specify the partition index of each zone you are writing. If you have not called

221



any of the functions to create partitions, always pass 0 for this argument.


When writing an unpartitioned zone with TecIO-MPI, specify a single process in the
tecZoneMapPartitionsToMPIRanks call. The zone will then be a non-partitioned zone
written entirely by that process.

Writing Data
In a Tecplot binary data file, actual data elements are contained by zones and variables.

• Zones are used to organize data spatially, chronologically, or by some other characteristic. Each
zone has a type (in a SZL file, finite element or IJK-ordered zones are supported) and a name. You
create zones using tecZoneCreateIJK or tecZoneCreateFE.

• Variables are named collections of values with a data type and value location. You specify the
names of variables when you first create the file using the Variable List argument to
tecFileWriterOpen. You specify the data type, location (nodal or cell-centered) and other
characteristics of each variable when creating individual zones, since these properties can vary
from one zone to the next.

After creating a zone, which specifies settings for the variables in that zone, call one of the
tecZoneVarWrite functions to pass the data for the zone. There is one such function for each value type
(e.g. tecZoneVarWriteFloatValues for 32-bit floating point values). You don’t necessarily need to call the
one that matches the type of the variable in the file; where possible, TecIO converts the output data to
the proper type (for example, you can pass 32-bit floating point values when writing a variable that
consists of 64-bit floating-point values).

It is not necessary to write all the data at once. You use the Count parameter in the tecZoneVarWrite
function to specify how many elements you are writing in that call. This way, you can easily write
values as you have them, and don’t need to keep them around any longer than you actually need them.
See Writing IJK-Ordered Data and Writing Finite Element Data for specific notes about writing data to
these types of zones.

Passive and Shared Variables

Not every zone might have values for every variable. A variable is specified to be passive if it does not
exist at all in a given zone. (The value of such a variable is taken to be zero everywhere.)

A variable may also be shared if it is to have the same value in more than one zone. In finite-element
solutions, the spatial variables X, Y, and Z are commonly shared among all zones.

Passive and shared variables are specified when creating the zone they belong to by passing:

• An array of Booleans that specifies which variables are passive.

• An array of integers specifiying the index of the zone from which the variable is shared, or 0 if the
variable is not shared. The variable must not be a shared variable in the zone from which it is

222



shared.

Writing IJK-Ordered Data

The I, J, and K indexes describe the extent of an ordered zone in three dimensions. If the extent of one
or more indexes is 1, the zone is two-dimensional or one-dimensional.

Even though the actual zone may have 1, 2, or 3 dimensions, the values array are passed one-
dimensionally, with the I-index varying the fastest and the K index the slowest. That is, all the I indexes
should be used before varying J, and all the J indexes should be used before varying K.

Writing Finite Element Data

A finite element (FE) zone is made up of a series of shapes, such as triangles or bricks, all having the
same number of vertices. Variable values can be designated to exist at either the nodes (vertices) or in
the center of the cells of each zone. Variable values in an FE zone are indexed by node number or cell
number, not by spatial coordinates.

The location of each cell is determined by the values of the variables X, Y, and Z (or e.g. X and Y for a 2D
FE zone), which are always nodal variables and so specify the spatial placement of the vertices of the
zone’s cells. The actual values for a variable in a FE zone are passed to TecIO as a list of the values of
the variable for each node or each cell (depending on whether the zone designates the variable as
nodal or cell-centered).

A separate data structure, the node map, specifies which vertices make up each cell, and must be
provided for each FE zone. The node map consists of a set number of values for each cell of the zone.
For example, a triangle zone contains three entries in the node map for each cell, because a triangle
has three vertices. The first three entries in the node map specify the vertices that make up the first
cell; the next three specify the vertices that make up the second cell, and so on. See Zone Type for
information on the number of nodes required for each FE element shape.

As with the data values themselves, the node map need not be given to TecIO all at once. Using the
Count argument in the tecZoneNodeMapWrite32 or 64 function, you can specify the number of node map
entries you are passing on each call. You can pass as few or as many as you want at a time, so long as
the total number of node map entries you pass corresponds to the number of data elements you passed
by the time you close the file.



The difference between these two functions is the size of the index, which is specified
for the variable when you create the zone. If your variable contain more than about 2
billion values, you must use 64-bit indexing. If it will be smaller, using 32-bit indexing
requires only half the space for the node map.

Writing Face Neighbors

Face neighbors are a list of cells indicating the cells that share faces. When loading data, Tecplot 360 or

223



Tecplot Focus automatically detects which cells share faces based on the IJK indexing of the cells (for
indexed zones) or the entries in the node map (for finite element zones). If your data contains
additional face neighbors that cannot be detected in this way, specify them using
tecZoneFaceNbrWriteConnections32 or tecZoneFaceNbrWriteConnections64.

The number of entries per face neighbor (in the face neighbors array passed to TecIO) is determined by
the Face Neighbor Mode, passed when creating the zone. See TECFACE142 in the classic API
documentation for a discussion of how many entries are required for each mode.

Writing Auxiliary Data
Tecplot data files can store named values referred to as auxiliary data. Auxiliary data is often used to
store metadata about a dataset or to hold the results of aggregate calculations such as overall lift or
maximum and minimum pressure. In Tecplot data files, auxiliary data can be attached to three points:
the dataset itself, the zone, and the variable. Each dataset, zone, and variable may have any number of
auxiliary data records attached.

Writing these types of auxiliary data is straightforward with the functions tecDataSetAddAuxData,
tecVarAddAuxData, and tecZoneAddAuxData. These functions are called similarly; for variable and zone
auxiliary data, you must pass the variable or zone index, respectively.

Auxiliary data names should be unique for the object they are attached to—that is, you should not
have two auxiliary data records named LIFT on a single zone; having LIFT on two different zones, or
on a zone and the dataset (etc.), is fine.

Auxiliary data values must be strings. If you wish to represent numeric quantities or, for example, a
comma-separated list of values or other record-style data, you must convert this to a string before
writing.

Other Elements
It is possible to write the following data elements using the new writing API:

• Text objects

• Geometries (shapes) of various sorts

• Custom labels

Most data files do not need to include these types of elements (especially text, as the font selection is
very limited for text elements in a data file). In general, we recommend creating these elements with a
layout file (.lay) and providing that with your data file, especially for text objects (layouts can use any
font installed on the system, while text objects in a data file can use only a limited solution of built-in
fonts).

224



Example
The rewriteszl example is a simple program that reads a SZL data file using the TecIO SZL reading API
(see Reading SZL Data Files) and writes it to a new SZL file using the new writing API. The resulting file
is functionally equivalent to the original, though it may not be identical at the binary level.

As such, the code illustrates writing every kind of data that can be stored in a SZL file. It also prints
information about each data object as it is read, which may make it helpful as a diagnostic tool. This
example is provided in both C++ (.cpp) and FORTRAN (.F, .f90) versions. Visual Studio solution files
are also provided.

SZCOMBINE
szcombine (szcombine.exe on Windows) is a command-line utility to combine into a .szplt file the six
temporary files produced by calls to TECFLUSH142 (or tecFileWriterFlush in the new API). It is installed
in Tecplot 360’s bin folder, and is also built when the Tecio library is built from the source package
available from the tecplot.com website. Its syntax is as follows:

szcombine infileBaseName [--cleanup] [--outfile outFileName]

infileBaseName is the file name passed into the FName parameter of TECINI142, to which was added six
suffixes to form the temporary file names. With no optional parameters, the temporary files are
combined to produce a .szplt file whose name is infileBaseName, and temporary files are left in place.
The --cleanup option causes the temporary files to be deleted. The --outfile option causes the .szplt file
to be written to a different filename. For example, given the following temporary files that were
produced by passing myfile.szplt into TECINI142:

myfile.szplt.szhdr  myfile.szplt.szdat  myfile.szplt.szaux
myfile.szplt.sztxt  myfile.szplt.szgeo  myfile.szplt.szlab

Then executing the command

szcombine myfile.szplt

would create myfile.szplt and leave the six temporary files in place. Note that if the program that
produced the temporary files (AKA solver) is still running and calls TECEND142, this file will be
overwritten by a new myfile.szplt that contains all data written by the solver.

Executing instead the command

szcombine myfile.szplt --cleanup

225



would create myfile.szplt and delete the temporary files. This is the same effect that calling TECEND142
from the solver would have had. NOTE: Do not use the --cleanup option if the solver is still running. It
will delete the temporary files that the solver expects to combine when it calls TECEND142.

Finally, executing the command

szcombine myfile.szplt --outfile mynewfile.szplt

Would create file mynewfile.szplt leave the six temporary files in place. You may also use the two
optional arguments together to create .szplt file with a non-default name and delete the temporary
files. Again, do not do this if the source program (solver) is still running.

Binary Data File Format
Refer to this section only if you wish to write your own code that writes Tecplot binary-format (.plt)
files without utilizing the TecIO library. Otherwise, refer to Getting Started for instructions for linking
with this library, which is provided at no cost by Tecplot, Inc.


Remember that polygonal zones are not available for Tecplot Focus. Refer to Creating
Data Files for Tecplot 360 and Focus for details.

The subzone file format (.szplt) is not currently documented because we anticipate the need for
changes to the file format in the near future. Furthermore, the format is sufficiently complex that we
do not expect application developers finding it worthwhile to undertake writing their own code to
output in .szplt format. If you want your application to write subzone files and find the TecIO library
insufficient, please contact us.

/*
BINARY FILE FORMAT:
-----------------------------------------------------------------------
Two binary data file formats are detailed below: v112 and v191. The differences
are minor. Preplot produces v112 which was introduced with Tecplot 11.2 in 2009.
v191 was introduced with Tecplot 2019r1. v191 supports more than 2 billion
faces and face-nodes for poly data, but is the same for all other types of data.

Binary data files have two main sections.  A header section and a data
section.

         +----------------+
         | HEADER SECTION |
         +----------------+
         +---------+
         | FLOAT32 |              EOHMARKER, value=357.0

226



         +---------+
         +----------------+
         | DATA SECTION   |
         +----------------+

I.  HEADER SECTION

    The header section contains: the version number of the file, a title
    of the file, the names of the variables to be plotted, the
    descriptions of all zones to be read in and all text and geometry
    definitions.

     i.  Magic number, Version number
         +-----------+
         | "#!TDVnnn"|       8 Bytes, exact characters "#!TDV112" or
         +-----------+       "#TDV191". The version number follows the
                             capital "V" and uses the next 3 characters
                             (for example: "V75 ", "V112" or "V191").
                             v112 files support only v112 zone headers.
                             v191 files support both v112 and v191
                             zone headers. (See below for zone headers.)

     ii. Integer value of 1.
         +-----------+
         | INT32     |       This is used to determine the byte order
         +-----------+       of the reader, relative to the writer.

     iii. Title and variable names.
         +-----------+
         | INT32     |       FileType: 0 = FULL,
         +-----------+                 1 = GRID,
                                       2 = SOLUTION
         +-----------+
         | INT32*N   |       The TITLE. (See note 1.)
         +-----------+
         +-----------+
         | INT32     |       Number of variables (NumVars) in the datafile.
         +-----------+
         +-----------+
         | INT32*N   |       Variable names.
         +-----------+          N =  L[1] + L[2] + .... L[NumVars]
                             where:
                                    L[i] = length of the ith variable name + 1

227



                                           (for the terminating 0 value).
                             (See note 1.)
     iv.  Zones
         +-----------+
         | FLOAT32   |       Zone marker. Value = 299.0 or 298.0
         +-----------+          This zone marker determines the zone header version.
                                299.0 indicates a v112 zone header (available in both
                                v112 and v191 file versions)
                                298.0 indicates a v191 zone header (available only
                                in v191 file version)
         +-----------+
         | INT32*N   |       Zone name. (See note 1.)
         +-----------+            N = (length of zone name) + 1.
         +-----------+
         | INT32     |       ParentZone: No longer used as of Tecplot version 2020r1
         +-----------+
         +-----------+
         | INT32     |       StrandID: -2 = pending strand ID for assignment
         +-----------+                      by Tecplot
                                       -1 = static strand ID
                                        >=0 valid strand ID
         +-----------+
         | FLOAT64   |       Solution time.
         +-----------+
         +-----------+
         | INT32     |       Default Zone Color. Seldom used.  Set to -1.
         +-----------+
         +-----------+
         | INT32     |       ZoneType 0=ORDERED,        1=FELINESEG,
         +-----------+                2=FETRIANGLE,     3=FEQUADRILATERAL,
                                      4=FETETRAHEDRON,  5=FEBRICK,
                                      6=FEPOLYGON,      7=FEPOLYHEDRON
         +-----------+
         | INT32     |       Specify Var Location.
         +-----------+          0 = Don't specify, all data is located
                                    at the nodes.
                                1 = Specify
         if "specify var location" == 1
           +-----------+
           | INT32*NV  |     Variable Location (only specify if above is 1).
           +-----------+     0 = Node, 1 = Cell Centered (See note 5.)
         +-----------+
         | INT32     |       Are raw local 1-to-1 face neighbors supplied?
         +-----------+       (0=FALSE 1=TRUE).   These raw values are a
                             compact form of the local 1-to-1 face neighbors.
                             If supplied, Tecplot assumes that the face
                             neighbors are fully specified.  As such, it
                             will not perform auto face neighbor assignment.

228



                             This improves Tecplot's time to first plot.
                             See the data section below for format details.
                             ORDERED and FELINESEG zones must specify 0 for
                             this value because raw face neighbors are not
                             defined for these zone types.  FEPOLYGON and
                             FEPOLYHEDRON zones must specify 0 for this value
                             since face neighbors are defined in the face map
                             for these zone types.

         +-----------+
         | INT32     |       Number of miscellaneous user-defined face
         +-----------+       neighbor connections (value >= 0). This value
                             is in addition to the face neighbors supplied
                             in the raw section.  FEPOLYGON and FEPOLYHEDRON
                             zones must specify 0.

         if "number of miscellaneous user-defined
             face neighbor connections" != 0
           +-----------+
           | INT32     |     User defined face neighbor mode
           +-----------+     (0=Local 1-to-1, 1=Local 1-to-many,
                             2=Global 1-to-1, 3=Global 1-to-many)
           if FE Zone:
             +-----------+
             | INT32     |   Indicates if the finite element face neighbors
             +-----------+   are completely specified by the miscellaneous
                             face neighbors given: (0=NO, 1=YES). If yes,
                             then Tecplot will not perform auto assignment
                             of face neighbors otherwise all faces not
                             specified are considered boundaries. If no,
                             then Tecplot will perform auto-assignment of
                             the face neighbors unless the raw face neighbor
                             array was supplied. This option is not valid
                             for ORDERED zones.
         if Ordered Zone:
           +-----------+
           | INT32*3   |     IMax,JMax,KMax
           +-----------+

         if FE Zone:
           +-----------+
           | INT32     |     NumPts
           +-----------+
           if ZoneType is FEPOLYGON or FEPOLYHEDRON:
             +-----------+
             | INT32/64  |   NumFaces: For v112 zone headers, this is an INT32.
             +-----------+     For v191 zone headers, this is an INT64.
             +-----------+

229



             | INT32/64  |   Total number of face nodes. For v112 zone headers
             +-----------+   this is an INT32. For v191 zone headers, this is an INT64.
                             (For FEPOLYGON zones, this is NumFaces*2.)
             +-----------+
             | INT32     |   Total number of boundary faces.  If any
             +-----------+   boundary faces exist, include one to represent
                             no neighboring element.
             +-----------+
             | INT32     |   Total number of boundary connections.
             +-----------+

           +-----------+
           | INT32     |     NumElements
           +-----------+
           +-----------+
           | INT32*3   |     ICellDim,JCellDim,
           +-----------+     KCellDim (for future use; set to zero)

         For all zone types (repeat for each Auxiliary data name/value pair):
         +-----------+
         | INT32     |       1=Auxiliary name/value pair to follow
         +-----------+       0=No more Auxiliary name/value pairs.

         If the above is 1, then supply the following:
           +-----------+
           | INT32*N   |     name string (See note 1.)
           +-----------+
           +-----------+
           | INT32     |     Auxiliary Value Format
           +-----------+     (Currently only allow 0=AuxDataType_String)

           +-----------+
           | INT32*N   |     Value string  (See note 1.)
           +-----------+

      v.  Geometries
         +-----------+
         | FLOAT32   |       Geometry marker.  Value = 399.0
         +-----------+
         +-----------+
         | INT32     |       Position CoordSys 0=Grid, 1=Frame,
         +-----------+                         2=FrameOffset(not used),
                                               3= OldWindow(not used),
                                               4=Grid3D
         +-----------+
         | INT32     |       Scope 0=Global 1=Local
         +-----------+

230



         +-----------+
         | INT32     |       DrawOrder 0=After, 1=Before
         +-----------+
         +-----------+
         | FLOAT64*3 |       (X or Theta),(Y or R),(Z or dummy)
         +-----------+            i.e. the starting location
         +-----------+
         | INT32     |       Zone (0=all)
         +-----------+
         +-----------+
         | INT32     |       Color
         +-----------+
         +-----------+
         | INT32     |       FillColor
         +-----------+
         +-----------+
         | INT32     |       IsFilled (0=no 1=yes)
         +-----------+
         +-----------+
         | INT32     |       GeomType  0=Line, 1=Rectangle 2=Square,
         +-----------+                 3=Circle, 4=ellipse
         +-----------+
         | INT32     |       LinePattern  0=Solid 1=Dashed 2=DashDot
         +-----------+                    3=DashDotDot 4=Dotted
                                          5=LongDash
         +-----------+
         | FLOAT64   |       Pattern Length
         +-----------+
         +-----------+
         | FLOAT64   |       Line Thickness
         +-----------+
         +-----------+
         | INT32     |       NumEllipsePts
         +-----------+
         +-----------+
         | INT32     |       Arrowhead Style 0=Plain, 1=Filled, 2=Hollow
         +-----------+
         +-----------+
         | INT32     |       Arrowhead Attachment 0=None, 1=Beg, 2=End, 3=Both
         +-----------+
         +-----------+
         | FLOAT64   |       Arrowhead Size
         +-----------+
         +-----------+
         | FLOAT64   |       Arrowhead Angle
         +-----------+
         +-----------+
         | IN32*N    |       Macro Function Command (string: N = Length+1)

231



         +-----------+
         +-----------+
         | INT32     |       Polyline Field Data Type
         +-----------+          1=Float, 2=Double  (GTYPE)
         +-----------+
         | INT32     |       Clipping (0=ClipToAxes, 1=ClipToViewport,
         +-----------+                 2=ClipToFrame)

If the geometry type is line then:
         +-----------+
         | INT32     |       Number of polylines
         +-----------+
         +-----------+
         | INT32     |       Number of points, line 1.
         +-----------+
         +-----------+
         | GTYPE*N   |       X-block geometry points N=NumPts
         +-----------+
         +-----------+
         | GTYPE*N   |       Y-block geometry points N=NumPts
         +-----------+
         +-----------+
         | GTYPE*N   |       Z-block geometry points N=NumPts (Grid3D Only)
         +-----------+
             .
             .
             .

If the geometry type is Rectangle then
         +-----------+
         | GTYPE*2   |       X and Y offset for far corner of rectangle
         +-----------+

If the geometry type is Circle then
         +-----------+
         | GTYPE     |       Radius
         +-----------+

If the geometry type is Square then
         +-----------+
         | GTYPE     |       Width
         +-----------+

If the geometry type is Ellipse then
         +-----------+
         | GTYPE*2   |       X and Y Radii
         +-----------+

232



    vi.   Text
         +-----------+
         | FLOAT32   |       Text marker.  Value=499.0
         +-----------+
         +-----------+
         | INT32     |       Position CoordSys 0=Grid, 1=Frame,
         +-----------+                         2=FrameOffset(not used),
                                               3= OldWindow(not used),
                                               4=Grid3D(New to V10)
         +-----------+
         | INT32     |       Scope 0=Global 1=Local
         +-----------+
         +-----------+
         | FLOAT64*3 |       (X or Theta),(Y or R),(Z or dummy)
         +-----------+               Starting Location
         +-----------+
         | INT32     |       FontType
         +-----------+
         +-----------+
         | INT32     |       Character Height Units 0=Grid, 1=Frame, 2=Point
         +-----------+
         +-----------+
         | FLOAT64   |       Height of characters
         +-----------+
         +-----------+
         | INT32     |       Text Box type 0=NoBox 1=Hollow 2=Filled
         +-----------+
         +-----------+
         | FLOAT64   |       Text Box Margin
         +-----------+
         +-----------+
         | FLOAT64   |       Text Box Margin Linewidth
         +-----------+
         +-----------+
         | INT32     |       Text Box Outline Color
         +-----------+
         +-----------+
         | INT32     |       Text Box Fill Color
         +-----------+
         +-----------+
         | FLOAT64   |       Angle
         +-----------+
         +-----------+
         | FLOAT64   |       Line Spacing
         +-----------+
         +-----------+

233



         | INT32     |       Text Anchor. 0=left,      1=center,
         +-----------+                    2=right,     3=midleft
                                          4=midcenter  5=midright,
                                          6=headleft   7=headcenter
                                          8=headright
         +-----------+
         | INT32     |       Zone (0=all)
         +-----------+
         +-----------+
         | INT32     |       Color
         +-----------+
         +-----------+
         | INT32*N   |       MacroFunctionCommand (string: N = Length + 1)
         +-----------+
         +-----------+
         | INT32     |       Clipping (0=ClipToAxes,
         +-----------+                 1=ClipToViewport, 2=ClipToFrame)
         +-----------+
         | INT32*N   |       Text.  N=Text Length+1
         +-----------+

     vii.CustomLabel
         +-----------+
         | FLOAT32   |       CustomLabel Marker;  F=599
         +-----------+
         +-----------+
         | INT32     |       Number of labels
         +-----------+
         +-----------+
         | INT32*N   |       Text for label 1.  (N=length of label + 1)
         +-----------+           See note 1.
         +-----------+
         | INT32*N   |       Text for label 2.  (N=length of label + 1)
         +-----------+           See note 1.
             .
             .
             .
         +-----------+
         | INT32*N   |       Text for label NumLabels.
         +-----------+           (N=length of label + 1) See note 1.

    viii.UserRec
         +-----------+
         | FLOAT32   |       UserRec Marker;  F=699
         +-----------+
         +-----------+
         | INT32*N   |       Text for UserRec.  See note 1.
         +-----------+

234



    ix. Dataset Auxiliary data.
         +-----------+
         | FLOAT32   |       DataSetAux Marker;  F=799.0
         +-----------+
         +-----------+
         | INT32*N   |       Text for Auxiliary "Name".  See note 1.
         +-----------+
         +-----------+
         | INT32     |       Auxiliary Value Format (Currently only
         +-----------+       allow 0=AuxDataType_String)
         +-----------+
         | INT32*N   |       Text for Auxiliary "Value".  See note 1.
         +-----------+
    x. Variable Auxiliary data.
         +-----------+
         | FLOAT32   |       VarAux Marker;  F=899.0
         +-----------+
         +-----------+
         | INT32*N   |       Variable number (zero based value)
         +-----------+
         +-----------+
         | INT32*N   |       Text for Auxiliary "Name".  See note 1.
         +-----------+
         +-----------+
         | INT32     |       Auxiliary Value Format (Currently only
         +-----------+       allow 0=AuxDataType_String)
         +-----------+
         | INT32*N   |       Text for Auxiliary "Value".  See note 1.
         +-----------+

II.  DATA SECTION (don't forget to separate the header from the data
     with an EOHMARKER).  The data section contains all of the data
     associated with the zone definitions in the header.

     i. For both ordered and fe zones:
         +-----------+
         | FLOAT32   |       Zone marker  Value = 299.0 if this zone was
         +-----------+         defined by a v112 zone header. 298.0 if this
                               zone was defined by a v191 zone header.
         +-----------+
         | INT32*N   |       Variable data format, N=Total number of vars
         +-----------+           1=Float,    2=Double, 3=LongInt,
                                 4=ShortInt, 5=Byte,   6=Bit
         +-----------+
         | INT32     |       Has passive variables: 0 = no, 1 = yes.
         +-----------+
         if "has passive variables" != 0

235



           +-----------+
           | INT32*NV  |     Is variable passive: 0 = no, 1 = yes
           +-----------+     (Omit entirely if "Has passive variables" is 0).
         +-----------+
         | INT32     |       Has variable sharing 0 = no, 1 = yes.
         +-----------+
         if "has variable sharing" != 0
           +-----------+
           | INT32*NV  |     Zero based zone number to share variable with
           +-----------+     (relative to this datafile). (-1 = no sharing).
                             (Omit entirely if "Has variable sharing" is 0).
         +-----------+
         | INT32     |       Zero based zone number to share connectivity
         +-----------+       list with (-1 = no sharing). FEPOLYGON and
                             FEPOLYHEDRON zones use this zone number to
                             share face map data.

         Compressed list of min/max pairs for each non-shared and non-passive
         variable. For each non-shared and non-passive variable (as specified
         above):
           +-----------+
           | FLOAT64   |       Min value
           +-----------+
           +-----------+
           | FLOAT64   |       Max value
           +-----------+
         +-----------+
         | xxxxxxxxxx|       Zone Data.  Each variable is in data format as
         +-----------+       specified above.

     ii. specific to ordered zones
         if "zone number to share connectivity list with" == -1 &&
            "num of misc. user defined face neighbor connections" != 0
           +-----------+
           | INT32*N   |     Face neighbor connections.
           +-----------+     N = (number of miscellaneous user defined
                                  face neighbor connections) * P
                             (See note 5 below).

     iii. specific to fe zones when FileType is not SOLUTION:
         if ZoneType is NOT FEPOLYGON or FEPOLYHEDRON :
           if "zone number to share connectivity lists with" == -1
             +-----------+
             | INT32*N   |     Zone Connectivity Data N=L*JMax
             +-----------+     (see note 2 below ).

236



           if "zone number to share connectivity lists with" == -1 &&
              "raw local 1-to-1 face neighbors are supplied"
             +-----------+
             | INT32*N   |     Raw local 1-to-1 face neighbor array.
             +-----------+     N = (NumElements * NumFacesPerElement)
                               (See note 3 below).

           if "zone number to share connectivity lists with" == -1 &&
              "num of misc. user defined face neighbor connections" != 0
             +-----------+
             | INT32*N   |     Face neighbor connections.
             +-----------+     N = (number of miscellaneous user defined
                                    face neighbor connections) * P
                               (See note 4 below).

         if ZoneType is FEPOLYGON or FEPOLYHEDRON:
           if "zone number to share face map data with" == -1
             if the zone header version for this zone is v112
               +-----------+
               |INT32*(F+1)|     Face node offsets into the face nodes array
               +-----------+     below. Does not exist for FEPOLYGON zones.
                                 F = NumFaces.
             otherwise the zone header version for this zone is v191
               +-----------+
               | INT32*F   |     Face node count for each face.
               +-----------+     Does not exist for FEPOLYGON zones.
                                 F = NumFaces.

             +-----------+
             | INT32*FN  |     Face nodes array containing the node numbers
             +-----------+     for all nodes in all faces.
                               FN = total number of face nodes.

             +-----------+
             | INT32*F   |     Elements on the left side of all faces.
             +-----------+     Boundary faces use a negative value which is
                               the negated offset into the face boundary
                               connection offsets array.  A value of "-1"
                               indicates there is no left element.
                               F = NumFaces.

             +-----------+
             | INT32*F   |     Elements on the right side of all faces.  See
             +-----------+     description of left elements above for more
                               details.  F = NumFaces.

             if "total number of boundary faces" != 0
               +-----------+

237



               | INT32*NBF |    Boundary face connection offsets into the
               +-----------+    boundary face connecion elements array and
                                the boundary face connection zones array.
                                The number of elements for a face (F) is
                                determined by offset[-o] - offset[-o-1]
                                where 'o' is the negative value from either
                                the left or right elements arrays above.
                                Offset[0] = 0. Offset[1] = 0 so that -1 as
                                the left or right element always indicates
                                no neighboring element.  If the number of
                                elements is 0, then there is no neighboring
                                element.
                                NBF = total number of boundary faces + 1.

               +-----------+
               | INT32*NBI |    Boundary face connection elements.  A value of
               +-----------+    "-1" indicates there is no element on part of
                                the face.
                                NBI = total number of boundary connections.

               +-----------+
               | INT32*NBI |    Boundary face connection zones.  A value of
               +-----------+    "-1" indicates the current zone.
                                NBI = total number of boundary connections.

NOTES:

1.  All character data is represented by INT32 values.

     Example:  The letter "A" has an ASCII value of 65.  The WORD
               written to the data file for the letter "A" is then
               65. In fortran this could be done by doing the following:

               Integer*32 I
               .
               .
               I = ICHAR('A');

               WRITE(10) I

    All character strings are null terminated
       (i.e. terminated by a zero value)

2.  This represents JMax sets of adjacency zero based indices where each
    set contains L values and L is

238



    2 for LINESEGS
    3 for TRIANGLES
    4 for QUADRILATERALS
    4 for TETRAHEDRONS
    8 for BRICKS

3.  The raw face neighbor array is dimensioned by (number of elements for
    the zone) times (the number of faces per element), where each member
    of the array holds the zero-based element neighbor of that face. A
    boundary face is one that has no neighboring element and is
    represented by a -1. Faces should only be neighbors if they logically
    share nodes and they should be reciprocal.

4.  FaceNeighbor Mode   # values  Data
    ---------------------------------------------------------------------
    LocalOneToOne       3         cz,fz,cz
    LocalOneToMany      nz+4      cz,fz,oz,nz,cz1,cz2,...,czn
    GlobalOneToOne      4         cz,fz,ZZ,CZ
    GlobalOneToMany     2*nz+4    cz,fz,oz,nz,ZZ1,CZ1,ZZ2,CZ2,...,ZZn,CZn

    Where:
        cz = cell in current zone (zero based)
        fz = face of cell in current zone (zero based)
        oz = face obscuration flag (only applies to one-to-many):
               0 = face partially obscured
               1 = face entirely obscured
        nz = number of cell or zone/cell associations
             (only applies to one-to-many)
        ZZ = remote Zone (zero based)
        CZ = cell in remote zone (zero based)

    cz,fz combinations must be unique and multiple entries are
    not allowed. Additionally, Tecplot assumes that with the
    one-to-one face neighbor modes, a supplied cell face is
    entirely obscured by its neighbor.  With one-to-many, the
    obscuration flag must be supplied.

    Face neighbors that are not supplied are run through
    Tecplot's auto face neighbor generator (FE only).

5.  Cell centered variable (DATA SECTION)
    To make reading of cell centered binary data efficient, Tecplot stores
    IMax*JMax*(KMax-1) numbers of cell centered values, where IMax, JMax,
    and KMax represent the number of points in the I, J, and K directions.
    Therefore extra zero values (ghost values) are written to the data file
    for the fastest moving indices. For example, if your data's IJK

239



    dimensions are 2x3x2, a cell-centered variable will have 1x2x1
    (i.e. (I-1)x(J-1)x(K-1)) significant values. However, 2x3x1 values must
    be written out because it must include the ghost values. Assume that the
    two significant cell-centered values are 1.5 and 12.5. The ghost values
    will be output with a zero value.

    So if the zone was dimensioned 2x3x2 its cell centered variable would be
    represented as follows:
      1.5   0.0  12.5   0.0   0.0   0.0

    If the zone was dimensioned 3x2x2 its cell centered variable would be
    represented as follows:
      1.5  12.5   0.0   0.0   0.0   0.0

    and if the zone was dimensioned 2x2x3 its cell centered variable would be
    represented as follows:
      1.5   0.0   0.0   0.0  12.5   0.0   0.0   0.0

    For large variables the wasted space is less significant than it
    is for the small example above.
-----------------------------------------------------------------------
*/

Meaningful Integer Values
The TecIO library often uses integers with special meanings, for example for colors, fonts, and zone
types. The same values are used both for writing (TECXXXX142 functions) and for SZL reading and
writing (tecXxxXxx functions). The table below documents the meaning of these values. Where
available, the equivalent keywords used in Tecplot ASCII files are also included.

Category Legal Values ASCII Keyword API Functions

Boolean 0: False
1: True

Many

File Format 0: Tecplot binary (.plt)
1: Tecplot subzone (.szplt)

n/a TECINI1142
tecFileWriterOpen

File Type 0: Full (grid and solution)
1: Grid only
2: Solution only

FULL
GRID
SOLUTION

TECINI1142
tecFileGetType
tecFileWriterOpen

Arrowhead
Attachment

0: None
1: Beginning
2: End
3: Both beginning and end

NONE
BEGINNING
END
BOTH

TECGEO142
tecGeomArrowheadGetAttach
tecGeomArrowheadSetInfo

240



Category Legal Values ASCII Keyword API Functions

Arrowhead Style 0: Plain
1: Filled
2: Hollow

PLAIN
FILLED
HOLLOW

TECGEO142
tecGeomArrowheadGetStyle
tecGeomArrowheadSetInfo

Clipping 0: Clip to viewport
1: Clip to frame

CLIPTOVIEWPORT
CLIPTOFRAME

TECGEO142, TECTXT142
tecGeomGetClipping
tecGeomSetClipping
tecTextGetClipping
tecTextSetClipping

Color 0: Black
1: Red
2 :Green
3: Blue
4: Cyan
5: Yellow
6: Purple
7: White
8–15 - Custom 1–8

BLACK
RED
GREEN
BLUE
CYAN
YELLOW
PURPLE
WHITE
CUST1–CUST8

TECGEO142, TECTXT142
tecGeomFill
tecGeomGetColor
tecGeomGetFillColor
tecGeomSetLineInfo
tecTextBoxGetColor
tecTextBoxGetFillColor
tecTextBoxSetInfo
tecTextGetColor
tecTextSetColor

Coordinate Mode 0: Grid
1: Frame
6: 3D Grida

GRID
FRAME
GRID3D

TECGEO142
tecGeom2DLineSegmentsBegin
tecGeom2DMultiLineSegmentsB
egin
tecGeomCircleBegin
tecGeomEllipseBegin
tecGeomGetCoordMode
tecGeomRectangleBegin
tecGeomSquareBegin
tecText2DBegin
tecTextGetCoordMode

Data Typeb 1: Single-precision (4)
2: Double-precision (8)
3: 32-bit integer (4)
4: 16-bit integer (2)
5: 8-bit unsigned int (1)

SINGLE
DOUBLE

TECINI142
tecZoneVarGetType
tecZoneCreateIJK
tecZoneCreateFE
tecZoneCreateFEMixed
tecFileWriterOpen

Face Neighbor
Mode

0: Local one-to-one
1: Local one-to-many
2: Global one-to-one
3: Global one-to-many

LOCALONETOONE
LOCALONETOMANY
GLOBALONETOONE
GLOBALONETOMANY

TECZNE142
TECZNEFEMIXED142
tecZoneFaceNbrGetMode
tecZoneCreateIJK
tecZoneCreateFE
tecZoneCreateFEMixed

241



Category Legal Values ASCII Keyword API Functions

Geometry Type 0: 2D polyline
1: Rectangle
2: Square
3: Circle
4: Ellipse
5: 3D polyline

LINE
SQUARE
RECTANGLE
CIRCLE
ELLIPSE
LINE3D

TECGEO142
tecGeomGetType

Line Pattern 0: Solid
1: Dashed
2: Dash Dot
3: Dotted
4: Long Dash
5: Dash Dot Dot

SOLID
DASHED
DASHDOT
DOTTED
LONGDASH
DASHDOTDOT

TECGEO142
tecGeomGetLinePattern
tecGeomSetLineInfo

Scope 0: Local—active frame only
1: Global—all frames that
share this data set

LOCAL
GLOBAL

TECGEO142,
TECTXT142
tecGeomGetScope
tecGeomSetScope
tecTextGetScope
tecTextSetScope

Text Anchor 0: Bottom left
1: Bottom center
2: Bottom right
3: Middle left
4: Middle center
5: Middle right
6: Top left
7: Top center
8: Top right

LEFT
CENTER
RIGHT
MIDLEFT
MIDCENTER
MIDRIGHT
HEADLEFT
HEADCENTER
HEADRIGHT

TECTXT142
tecTextGetAnchor
tecTextSetAnchor

Text Box Type 0: None
1: Filled (opaque)
2: Hollow (outline only)

NOBOX
FILLED
HOLLOW

TECTXT142
tecTextBoxGetType
tecTextBoxSetInfo

Text Size Units 0: Grid units
1: % of frame height
2: Typographical points

GRID
FRAME
POINTS

TECTXT142
tecText2DBegin
tecText3DBegin
tecTextGetSizeUnits

242



Category Legal Values ASCII Keyword API Functions

Typeface/Fontc 0: Helvetica
1: Helvetica Bold
2: Greek
3: Math
4: User-Defined
5: Times
6: Times Italic
7: Times Bold
8: Times Italic Bold
9: Courier
10: Courier Bold

HELV
HELV-BOLD
GREEK
MATH
USER-DEF
TIMES
TIMES-ITALIC
TIMES-BOLD
TIMES-ITALIC-BOLD
COURIER
COURIER-BOLD

TECTTXT142
tecTextGetTypeface
tecTextSetTypeface

Value Location 0: Cell-centered
1: Nodal

CELLCENTERED
NODAL

TECZNE142
TECZNEFEMIXED142
TECPOLYZNE142
tecZoneVarGetValueLocation
tecZoneCreateIJK
tecZoneCreateFE
tecZoneCreateFEMixed

Zone Typed 0: Ordered
1: FE line segment (2)
2: FE triangle (3)
3: FE quadrilateral (4)
4: FE tetrahedron (4)
5: FE brick (8)
6: FE polygon (variable)
7: FE polyhedron (variable)
8: FE Mixed (variable)

ORDERED
FELINESEG
FETRIANGLE
FEQUADRILATERAL
FETETRAHEDRON
FEBRICK
FEPOLYGON
FEPOLYHEDRAL
(not used)

TECZNE142
TECPOLYZNE142e

tecZoneCreateFE
tecZoneGetType

a. Only for 3D line segment geometries and text objects. Text with this coordinate mode is visible only
in 3D Cartesian plots.
b. When writing data using the classic API, you may choose only between single-precision and double-
precision float types via a Boolean flag in TECINI142. However, the new writing API (along with Tecplot
products and add-ons) can create zones of other types. When reading files, you should be prepared to
find different types—some possibly integers. Number of parentheses is the number of bytes per
element.
c. Due to the limited font selection available in data files, you will usually want to specify text objects in
layouts or stylesheets, where any font installed on the system may be specified by name.
d. Number in parentheses is the number of nodes per element.
e. FEPOLYGON and FEPOLYHEDRAL only.

See the following chapters for more information on how these values are used:

• Binary Data

243



• ASCII Data

• Reading SZL Data Files

• Writing SZL Data Files (New API)

Glossary
The following terms are used throughout the Data Format Guide and are included here for your
reference.

2D Plotting in two dimensions. Line plots of one or more variables (XY and Polar
Line plots) are not considered 2D.

2D Cartesian Plot A plot of some variable by location on a single plane using two axes.

3D Plotting in three dimensions. Three-dimensional plotting can be subdivided into
3D surface and 3D volume.

3D Cartesian Plot A plot displaying a 3D scattering of points, surfaces, or volumes using three
orthogonal axes.

3D Surface Three-dimensional plotting confined to a surface. For example, the surface of a
wing.

3D Volume Three-dimensional plotting of data that includes interior data points of a volume,
as well as those on the surface. For example, the vector field around a wing.

Active Zone A zone that is displayed in the current plot, as determined in the Zone Style
dialog.

ASCII Data File A data file composed of human-readable statements and numbers using ASCII
characters.

Auxiliary Data Metadata attached to zones, data sets, and frames.

Binary Data File A data file composed of machine-readable data. This type of file is created by
converting ASCII data files with Preplot, or by directly creating them from an
application.

Block A data file format in which the data is listed by variable. All the point values of
the first variable are listed first, then all the point values of the second variable,
and so forth.

Boundary Cell
Faces

A set of un-blanked cell faces in a 3D volume zone which have only one
neighboring volume cell. In contrast, interior cell faces have two neighboring
volume cells, one on either side, which share the face. For an IJK-ordered zone
the boundary cell faces are on the exterior of the zone. That is, the first and last I-
planes, the first and last J-planes, and the first and last K-planes. For a finite
element 3D volume zone, boundary cell faces are on the exterior of the zone and
the surface of any voids within the zone.

244



Brick An element type of finite element volume data composed of eight node points
arranged in a hexahedron-like format. This element type is used in 3D volume
plotting.

Cell Either an element of finite element data, or the space contained by one
increment of each index of IJ- or IJK-ordered data.

Cell-Centered Val­
ues

Values located at the center of the cell (assumed to be the centroid).

Connectivity List The portion of a finite element data file which defines the elements or cells by
listing the relationships between points. The number of points per cell is
determined by the element type.

Custom Labels Text strings contained within a data file or text geometry file which define labels
for your axes or contour table. You may select Custom Labels anywhere you can
choose a number format, the result is the text strings in place of numbers. The
maximum length of a custom label is 1024 characters.

Data File A file that contains data used for plotting in Tecplot.

Data Format The type of zone data as specified by the format parameter in a Tecplot data file,
such as: BLOCK or POINT.

Data Loader A Tecplot add-on which allows you to read non-Tecplot data files.

Data Point An XYZ-point at which field variables are defined.

Data Set A set of one or more zones. A data set may be plotted in one or more frames.
However, a single frame may only plot one data set. A data set may be created by
loading one or more data files.

Element Type The form of individual elements in a finite element zone. There are four types of
cell-based finite element zones: Triangle and Quadrilateral (finite element
surface types), and Tetrahedron and Brick (finite element volume types). For cell-
based finite elements, the element type of a zone determines the number of
nodes per element and their orientation within an element.
There are two types of face-based finite element zones: polygonal (2D) and
polyhedral (3D). For face-based elements, the number of nodes per element is
variable. Tecplot Focus cannot load face-based zones.

FE An abbreviation for finite element, a common means of arranging data for
calculations. (Often referred to as "unordered" or "unstructured".)

FE Surface A finite element zone of the element type Triangle, Quadrilateral, Polygon. These
zones are used for 2D and 3D surface plots.

FE Volume A finite element zone of the element type Tetrahedron, Brick, Polyhedron. These
zones are used for 3D volume plots.

Field Map A collection of zones for 2D and 3D field plots. A common style can be easily
applied to all zones in the selection.

245



Field Plot Includes 2D Cartesian and 3D Cartesian plot types. Generally used to display the
spacial relationship of data. Mesh, Contour, Vector, Scatter and Shade are all
considered field plots. XY and Polar Line plots and the Sketch plot type are not
field plots.

Finite Element A type of data point ordering. Data is arranged by listing the data points (called
nodes), and then listing their relationships (called elements). The element type of
the zone determines the number of nodes which are contained in each element,
as well as the exact relationship of nodes within an element. There are several
different element types supported by Tecplot: Triangle, Quadrilateral,
Tetrahedron, Brick, Polygonal, and Polyhedral, See also: Connectivity List, and
Node,

I-Ordered A type of data point ordering where each point is listed one at a time (that is, by
one index). Used mainly in XY-plots. In 2D or 3D, this type of data point ordering
is sometimes called irregular, and is only useful for scatter plots, or for
interpolating into 2D, 3D surface, or 3D volume zones. (This type of data can also
be used for 2D or 3D vector plots if streamtraces are not required.)

IJ-Ordered A type of data point ordering where the points are arranged in a 2D array used
for 2D and 3D surface plotting.

IJK-Blanking A feature to include or exclude portions of an IJK-ordered zone based on index
ranges.

IJK-Ordered A type of data ordering where the points are arranged in a 3D array. Used for 3D
volume plotting as well as 2D and 3D surface plotting.

I-Plane In an ordered zone, the connected surface of all points with a constant I-index. In
reality, I-planes may be cylinders, spheres, or any other shape.

Irregular Data Points which have no order, or at least no order which can be easily converted to
IJ- or IJK-ordering.

J-Plane In an ordered zone, the connected surface of all points with a constant J-index. In
reality, J-planes may be cylinders, spheres, or any other shape.

K-Plane In an IJK-ordered zone, the connected surface of all points with a constant K-
index. In reality, K-planes may be cylinders, spheres, or any other shape.

Macro A file containing a list of instructions, called macro commands, which can
duplicate virtually any action performed in Tecplot.

Macro Command An instruction given to Tecplot in a macro file. Macro commands always start
with a dollar sign and then an exclamation mark. For example, $!Redraw
refreshes a plot view.

Macro File A file which contains a series of macro commands. Macro files are run from the
command line, or through the Play option of the Macro sub-menu of the File
menu.

Macro Function A self-contained macro sub-routine.

246



Macro Variable A holding place for numeric values in a macro file. There are two types of macro
variables: user-defined (you set and retrieve the value), or internal (Tecplot sets
the value and you may retrieve it).

No Neighboring
Element

In polyhedral/polygonal fe data sets, the term "no neighboring element" refers to
a face that does not have a neighboring element on either its right or left side.

Node A point in finite element data.

Number Format The style of numbers to display for a data or axis label; exponent, integer, float,
and so forth.

Ordered Data A type of data point organization which consists of a parameterized series of
points. There are seven types of ordered data: I-, J-, K-, IJ-, JK-, IK-, and IJK-
ordered. I-, IJ-, and IJK-ordered are the most common.

Polygonal A 2D, face-based finite element type. The number of nodes per element is
variable. That is, a single polygonal zone may contain triangular, quadrilateral,
hexagonal, …, etc. elements. Tecplot Focus cannot load this type of zone.

Polyhedral A 3D, face-based finite element type. The number of nodes per element is
variable. That is, a single polyhedral zone may contain tetrahedral and brick (and
others) elements. Tecplot Focus cannot load this type of zone.

Point A data file format for an I-, IJ-, or IJK-ordered zone in which the data is listed by
point. All of the variable values for the first data point are listed first, then all the
variable values for the second data point, and so forth.

Quadrilateral An element type of finite element surface data which is composed of four node
points arranged in a quadrilateral. Used in 2D and 3D surface plotting.

Sharing Variable sharing allows a single storage location to be used by more than one
party. For example, if the X-variable is shared between zones five and seven only
one storage location is created. The storage is not freed by Tecplot until the
number of parties accessing the data is reduced to zero. Variables and
connectivity information may be shared.

Subzone A portion of a zone,. Also refers to a file format (.szplt) introduced in Tecplot 360
EX that allows subzones to be loaded as needed for plots and other operations. In
typical use cases, this significantly improves interactive performance and
reduces memory footprint compared to .plt files.

Tetrahedron An element type of finite element volume data which is composed of four node
points arranged in a tetrahedron. (Used in 3D volume plotting.)

Triangle An element type of finite element surface data which is composed of three node
points arranged in a triangle. (Used in 2D and 3D surface plotting.)

Unordered or
Unorganized Data

(See Irregular Data)

247



Zone A subset of a data set which is assigned certain plot types. Zones may be activated
(plotted) or deactivated (not plotted). Each zone has one type of data ordering: I-,
IJ-, IJK-, or finite element. Zones are typically used to distinguish different
portions of the data. For example, different calculations, experimental versus
theoretical results, different time steps, or different types of objects, such as a
wing surface versus a vector field around a wing.

Zone Layers One way of displaying a 2D or 3D plot’s data set. The plot is the sum of the active
zone layers, which may include mesh, contour, vector, shade, scatter and edge.

248



Copyright
Tecplot 360 Data Format Guide is for use with Tecplot 360 2025 R1.

Copyright © 1988-2025 Tecplot, Inc. All rights reserved worldwide. Except for personal use, this manual may not be reproduced, transmitted, transcribed, stored in a retrieval
system, or translated in any form, in whole or in part, without the express written permission of Tecplot, Inc., 3535 Factoria Blvd, Ste. 550; Bellevue, WA 98006 U.S.A.

The software discussed in this documentation and the documentation itself are furnished under license for utilization and duplication only according to the license terms. The
copyright for the software is held by Tecplot, Inc. Documentation is provided for information only. It is subject to change without notice. It should not be interpreted as a
commitment by Tecplot, Inc. Tecplot, Inc. assumes no liability or responsibility for documentation errors or inaccuracies.

Tecplot, Inc.
Post Office Box 52708
Bellevue, WA 98015-2708 U.S.A.

Tel:1.800.763.7005 (within the U.S. or Canada), 00 1 (425) 653-1200 (internationally)

E-mail: sales@tecplot.com, support@tecplot.com
Questions, comments or concerns regarding this document: support@tecplot.com

For more information, visit www.tecplot.com

Tecplot®, Tecplot 360,™ Tecplot 360 EX,™ Tecplot Focus, the Tecplot product logos, Preplot,™ Enjoy the View,™ Master the View,™ SZL,™ Sizzle,™ and Framer™ are registered
trademarks or trademarks of Tecplot, Inc. in the United States and other countries. All other product names mentioned herein are trademarks or registered trademarks of their
respective owners.

NOTICE TO U.S. GOVERNMENT END-USERS

Use, duplication, or disclosure by the U.S. Government is subject to restrictions as set forth in subparagraphs (a) through (d) of the Commercial Computer-Restricted Rights clause at
FAR 52.227-19 when applicable, or in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013, and/or in similar or successor
clauses in the DOD or NASA FAR Supplement. Contractor/manufacturer is Tecplot, Inc., 3535 Factoria Blvd, Ste. 550; Bellevue, WA 98006 U.S.A.

Part Number: 23-360-05-2 Build Revision {CI_PIPELINE_ID}

Released: 06/2025

For third-party trademark and copyright information, see the User’s Manual.

249

mailto:sales@tecplot.com
mailto:support@tecplot.com
mailto:support@tecplot.com
http://www.tecplot.com
360-users-manual.pdf

	Data Format Guide Tecplot 360 2025 Release 1
	Table of Contents
	Introduction
	Subzone Loading
	Creating Data Files for Tecplot 360 and Focus
	Best Practices
	Auxiliary Data Influencing Tecplot 360’s Behavior
	CFDA Auxiliary Data


	Data Structure
	Ordered Data
	Finite Element Data
	Line Data
	Surface Data
	Volume Data
	Finite Element Data Limitations

	Variable Location
	Face Neighbors
	Working with Unorganized Data Sets
	Example - Unorganized Three-Dimensional Volume

	Time and Date Representation

	Binary Data
	Getting Started
	Viewing Your Output
	Partitioned Data
	Binary File Compatibility
	Deprecated Binary Functions
	Character Strings in FORTRAN
	Boolean Flags

	Binary Data File Function Calling Sequence
	Additional Requirement for Parallel Output
	Non-partitioned Zones
	Partitioned Zones

	Writing to Multiple Binary Data Files
	Linking with the TecIO Library
	Linux/Macintosh
	Windows
	Notes for Windows Programmers using Fortran

	Binary Data File Function Reference
	TECAUXSTR142
	TECDAT142
	TECEND142
	TECFACE142
	TECFEMIXEDPTN142
	TECFEPTN142
	TECFIL142
	TECFLUSH142
	TECFOREIGN142
	TECGEO142
	TECIJKPTN142
	TECINI142
	TECLAB142
	TECMPIINIT142
	TECNOD142
	TECNODE142
	TECPOLYFACE142
	TECPOLYBCONN142
	TECPOLYZNE142
	TECTXT142
	TECUSR142
	TECVAUXSTR142
	TECZAUXSTR142
	TECZNE142
	TECZNEFEMIXED142
	TECZNEMAP142

	Defining Polyhedral and Polygonal Data
	Boundary Faces and Boundary Connections
	FaceNodeCounts and FaceNodes
	FaceRightElems and FaceLeftElems
	FaceBoundaryConnectionElements and Zones
	Partially Obscured Boundary Faces

	Examples
	Face Neighbors
	Polygonal Example
	Multiple Polyhedral Zones
	Multiple Polygonal Zones
	Polyhedral Example
	IJ-ordered zone
	Switching Between Two Files
	Text Example
	Partitioned Data Examples


	ASCII Data
	Converting ASCII to Binary
	Syntax Rules & Limits
	ASCII File Structure
	File Header
	Zone Record
	Text Record
	Geometry Record
	Custom Labels Record
	Data Set Auxiliary Data Record
	Variable Auxiliary Data Record
	ASCII Data File Parameter Assignment Values

	Ordered Data
	I-Ordered Data
	IJ-Ordered Data
	IJK-Ordered Data
	Ordered Data Examples

	Finite Element Data
	Variable and Connectivity List Sharing
	Finite Element Data Set Examples

	ASCII Data File Conversion to Binary
	Preplot Options
	Preplot Examples


	Reading SZL Data Files
	Getting Started with the API
	Passing Arguments and Receiving Values
	Indexing and Zero Values
	Errors

	API Overview
	Files and Data Sets
	Geometries
	Text
	Custom Label Sets
	Strings
	Auxiliary Data
	Variables
	Zones
	Connectivity
	Data Values

	Opening and Closing Files
	Dealing with Strings
	Reading Data
	Reading Connectivity Data
	Accessing Data Values

	Reading Auxiliary Data
	Reading Geometry and Text
	Reading Custom Labels
	Example Code

	Writing SZL Data Files (New API)
	Getting Started with the API
	Passing Arguments and Receiving Values
	Indexing and Zero Values
	Return Values and Errors

	API Overview
	Initialization and File Handling
	Auxiliary Data
	Zones, Variables, and Data
	Partitioning and MPI
	Connectivity

	Opening and Closing Files
	Working With Partitions
	Overlap and Ghosts
	Partitioning Zones

	Writing Data
	Passive and Shared Variables
	Writing IJK-Ordered Data
	Writing Finite Element Data
	Writing Face Neighbors

	Writing Auxiliary Data
	Other Elements
	Example
	SZCOMBINE

	Binary Data File Format
	Meaningful Integer Values
	Glossary
	Copyright

