
1

IDENTIFICATION OF SWIRLING FLOW

IN 3-D VECTOR FIELDS

David Sujudi* and Robert Haimes**

Department of Aeronautics and Astronautics

Massachusetts Institute of Technology

Cambridge, MA 02139

Abstract

An algorithm for identifying the center of swirling
flow in 3-D discretized vector fields has been
developed. The algorithm is based on critical point
theory and has been implemented as a visualization
tool within pV3, a package for visualizing 3-D
transient data. The scheme works with gridding
supported by pV3: structured meshes as well as
unstructured grids composed of tetrahedra,
polytetrahedral strips, hexahedra, pyramids, and/or
prism cells. The results have been validated using
artificially-generated vector fields and 3-D CFD data.

Introduction

This work is motivated by the need to easily locate
vortices in large 3-D transient problems. A tool that
will automatically identify such structures is definitely
needed to avoid the time-consuming and tedious task
of manually examining the data. However, the
question of what defines a vortex raises considerable
confusion. As a result, various definitions have been
proposed by investigators, including, among others,
Moin and Kim [1] [2], Villasenor and Vincent [3],
Globus, Levit, and Lasinski [4], Banks and Singer [5]
[6], and Jeong and Hussain [7]. The reader can refer
to [6] for a survey of the schemes that have been
developed and [7] for comparisons of some of them

We see the need for a tool that can help
investigators locate vortices, and yet has a familiar and
intuitive interpretation. Due to the confusion on what
constitutes a vortex, we relax the condition that what
the tool finds must be vortices. However, the scheme
must be practical, in terms of computational speed and
usability. We must also be able to easily integrate it
into a publicly-available visualization package,

particularly pV3 [8], a scientific visualization software
designed for co-processing and distributed
computation (i.e., the user can visualize the solution as
it is being computed on one or more computers).

We believe that a tool that identifies the center of
swirling flows satisfies the above need and criteria.
Investigators have been using swirling flow as one of
the means to locate vortices in 3-D discretized vector
fields. Swirling flows in a 3-D field are usually
identified by studying vector fields that are mapped
onto planar cuts or by seeding streamlines. These
procedures can be very laborious, especially for large
and complex flows. The scheme presented here allows
automatic identification of the center of swirling flows
in 3-D vector fields.

The algorithm for implementing this tool is based
on critical-point theory. As will be described below,
the scheme works on a cell by cell basis, lending itself
to parallel processing, and is flexible enough to work
with the various types of grids supported by pV3. By
employing this method, we have avoided the need for
curve integration (which is needed for visualization
tools such as streamlines and particle paths). Curve
integration is a serial operation and can not readily
take advantage of pV3’s distributed computing
capabilities. And, as described in [9], integrations
across a distributed environment involve passing
information between machines and other additional
complexities which further reduce efficiency.

In the next sections, we will describe the
theoretical background of this algorithm and how it is
implemented. The results of the scheme on exact
artificially-generated data as well as CFD data will be
shown and its performance will be discussed. Our
algorithm will also be compared (using artificially-
generated data) against a tool developed by Globus,
Levit,and Lasinski [4].

Theory

Critical points are defined as points where the
streamline slope is indeterminate and the velocity is
zero relative to an appropriate observer [10].

* Graduate Research Assistant, Member AIAA
** Principal Research Engineer, Member AIAA

Copyright © 1995 by the American Institute of
Aeronautics and Astronautics, Inc.
All rights reserved.

2

According to critical point theory, the eigenvalues and
eigenvectors of the rate-of-deformation tensor, ∂ ui /∂ xj

(we’ll call this matrix A), evaluated at a critical point
defines the flow pattern about that point. Specifically,
if A has one real and a pair of complex-conjugate
eigenvalues the flow forms a spiral-saddle pattern, as
illustrated in Figure 1. The eigenvector corresponding
to the real eigenvalue points in the direction about
which the flow spirals, and consequently, the plane
normal to this eigenvector defines the plane on which
the flow spirals. For a complete description of all
other possible trajectories the reader can refer to [10]
or [11].

Since we intuitively identify the pattern in Figure 1
as swirling flow, we can use the above method to find
the center of swirling flows located at critical points.
However, there are obviously swirling flows whose
center is not at a critical point. Fortunately, a similar
method can be applied in these cases.

At a non-critical point with the necessary
eigenvalue combination (i.e., one real and a pair of
complex conjugates) the velocity in the direction of
the eigenvector corresponding to the real eigenvalue is
subtracted. The invariance of the eigenvectors’
directions with respect to a Galilean transformation
ensures that the resulting flow will have the same
principal directions. We’ll call the resulting velocity
vector the reduced velocity. If the reduced velocity is
zero, then the point must be at the center of the
swirling flow. A similar statement was also made by
Vollmers, Kreplin, and Meier [12].

Therefore, to find a point at the center of a local
swirling flow, we look for a point whose rate-of-
deformation tensor has one real and a pair of complex-
conjugate eigenvalues and whose reduced velocity is
zero.

Implementation

pV3 accepts structured and/or unstructured grids
(containing any combination of tetrahedra,
polytetrahedra strips, hexahedra, pyramids, and prism
cells). In the interest of efficiency, we have decided to
use only tetrahedral cells, with all other cell types
reduced to 2 or more tetrahedra. Figure 2 shows how
various types of cells are decomposed into tetrahedral
cells.

This approach enables us to use a simple linear
interpolation for the velocity, avoiding the more
complex, and inherently more costly, interpolation
required by other types of cells (such as bilinear
interpolation for hexahedra). A tetrahedron has 4 node
points, sufficient to solve for the four coefficients of a

3-D linear interpolant. More importantly, linear
velocity interpolation produces a constant rate-of-
deformation tensor within the entire tetrahedral cell.
Consequently, the straight forward algorithm described
below can be employed, which otherwise would not
have been possible.

The algorithm proceeds one tetrahedral cell at a
time, and can be summarized as follows (it is assumed
that a velocity vector is available at each node):

1. Linearly interpolate the velocity within the cell.

2. Compute the rate-of-deformation tensor A. Since
a linear interpolation of the velocity within the
cell can be written as

 u C
u

x
x

u

y
y

u

z
zi i

i i i= + + +
∂
∂

∂
∂

∂
∂

Δ Δ Δ (1)

then A can be constructed from the coefficients of
the linear interpolation function of the velocity
vector.

3. Find the eigenvalues of A. Processing continues
only if A has one real (λR) and a pair of complex-
conjugate eigenvalues (λC).

4. At each node of the tetrahedron, subtract the
velocity component in the direction of the
eigenvector corresponding to λR. This is
equivalent to projecting the velocity onto the
plane normal to the eigenvector belonging to λR ,
and can be expressed as

 ()� � � � �

w u u n n= − ⋅ (2)

where
�

n is the normalized eigenvector
corresponding to λR, and w is the reduced
velocity.

5. Linearly interpolate each component of the
reduced velocity to obtain

 w a b x c y d zi i i i i= + + + (3)

 i = 1 2 3, ,

6. To find the center, we set wi in equation (3) to
zero. Since the reduced velocity lies in a plane, it
has only 2 degrees of freedom. Thus, only 2 of
the 3 equations in equation (3) are independent.
Any 2 can be chosen as long as their coefficients
are not all zero. Now we have

 0 = + + +a b x c y d zi i i i (4)

 i = 1 2,

3

which are the equations of 2 planes, whose
solution (the intersection of 2 planes) is a line.

7. If this line intersects the cell at more than 1 point,
then the cell contains a center of a local swirling
flow. The center is defined by the line segment
formed by the 2 intersection points.

Since the 2 intersection points lie on the line found
in step 6, the reduced velocity at those points must be
zero. This suggests a different (but equivalent) and
more efficient way to finding the center. This
approach renders steps 5, 6, and 7 unnecessary and
replaces them with a new step 5:

5. For each of the tetrahedron’s face, determine
if there is exactly 1 point on the face where the
reduced velocity is zero. If at the end there are exactly
2 distinct points, then the cell contains a center, which
is defined by those 2 points.

Both approaches have been tried on our test cases
with identical results. Therefore, the second approach
is implemented.

Results and Comparisons

The algorithm is first tested on artificially-
generated vector fields where the location of the center
of the swirling flow is known exactly. The field is
defined by

()v
x

y y
c

v
y

x x
c

v
z

f z= − = − =, , (5)

Note that this vector field has circular streamlines (in
the x-y plane) around a central axis whose location is
defined by xc and yc. The magnitude of the vector is
equal to the distance from the central axis. The field is
discretized using an 11 x 11 x 11 node structured grid.
The results for various values of xc, yc, and functional
forms of vz (including constant, linear, and
exponential) are studied and determined to be correct.
A sample result (with xc = 2.2 Δx, yc = 1.5 Δy, and vz =
1) is shown in Figure 3. A streamline is also shown in
this figure to provide a sense of the swirling vector
field.

Further tests are done using data from 3-D
calculations of flow past a tapered cylinder [13] and of
flow over an F-117 fighter at an angle of attack [14].
The tapered-cylinder calculation employs structured
grid, while the F-117 case uses unstructured grid
composed of tetrahedra. The size of these data sets
and the time needed to find the swirl flow centers are
summarized in table 1.

Table 1 Size of Test Cases

Case Number of

Nodes

Number

of Cells

Number of

Tetrahedral

Cells*

Calculation

Time (sec.)**

Cylinder 131072 123039 738234 34

F-117 48518 240122 240122 16

* After decomposition (if needed) of original cells.
** On SGI Indigo2 with MIPS R4400 150 Mhz CPU.

Results are shown in Figures 4 and 5. To indicate
the existence swirling flow, streamlines have been
spawned near the centers found by the algorithm.
These results indicate that the large coherent structures
found by the algorithm do indeed correspond to
centers of swirling flow. However, the algorithm does
not find all the swirling flow in the tapered cylinder
data. Missing are a few swirling flow structures
further downstream of the cylinder, which are found
by studying the vector field more closely. We believe
the size of the grid cells might be a factor. The cells
are larger away from the cylinder, reducing the
accuracy in the calculation of the rate-of-deformation
tensor (and consequently the reduced velocity).
Another possible cause is the algorithm’s sensitivity to
the strength of the swirl flow. As shown in Figures 4b
and 4c, the structures are very coherent for strong
swirls (i.e., the swirl velocity is larger than or
comparable to the normal velocity). However, the
structures start to break up as the swirl weakens, and
further downstream, where the swirl flows are very
weak, the algorithm finds no coherent structures.

In the case of the F-117 data, the structures are less
coherent than in the tapered cylinder. The tetrahedral
grid used in this data is very irregularly sized, and is
rather coarse. Comparison between the streamlines in
Figures 4c and 5 also shows that the swirl in the F117
data is noticeably weaker. Both of these factors might
contribute to the incoherency in the structures.

We have also compared our results with that of
FAST’s vortex-core finder [4] [15]. FAST’s finder
defines a vortex core by integrating from a critical
point in the direction of the eigenvector corresponding
to the only real eigenvalue of the rate-of-deformation
tensor. For this comparison, we use 3 artificially-
generated data sets, each bounded by a cube
containing 3 randomly-placed vortices. The data
generator is developed by D. Asimov at NASA Ames
Research Center.

The comparisons are shown in Figures 6a to 6f.
Despite the lack of any 3-dimensional cues, the curves

4

in these figures do exist in 3-D space, and each pair of
figures are taken from the same view point. A high
degree of similarities are found in each case except for
the middle curves in each data set, where FAST
produces curves that are either longer and/or has
different orientation. Closer inspection of the data
shows that pV3’s results are the correct ones, while
FAST’s curve integrations veer away from the core.

Conclusion

An algorithm to automatically locate the center of
swirling flow in 3-D vector fields has been developed
and implemented as part of the pV3 visualization
package. By employing cell-by-cell processing and
using only tetrahedral cells (and transforming other
cell types to tetrahedra), the scheme can take
advantage of pV3’s distributed environment and the
simplification from using linear interpolation.
Although we believe the strength of the swirl flow and
the coarseness of the grid can affect the degree of
accuracy and coherency of the results, tests using
artificially-generated vector fields and 2 different CFD
data have shown that the coherent structures found by
the algorithm are indeed centers of swirling flow.
Comparisons with FAST vortex-core finder also show
high degrees of similarities in the results.

Acknowledgements

The authors would like to thank Al Globus and
Creon Levit of NASA Ames for their inputs and
suggestions, as well as their eigen solver. Dan Asimov
of NASA Ames provided the data-set generator used
for generating the comparison data.

This work was funded by NASA Ames Research
Center (Tom Woodrow and Michael J. Gerald-
Yamasaki, technical monitors) and United
Technologies Research Center (Dave Edwards,
technical monitor).

References

 [1] P. Moin and J. Kim, “The Structure of the
Vorticity Field in Turbulent Channel Flow. Part
1. Analysis of Instantaneous Fields and Statistical
Correlations,” J. Fluid Mech. 155, pp. 441, 1985.

[2] J. Kim and P. Moin, “The Structure of the
Vorticity Field in Turbulent Channel Flow. Part
1. Study of Ensemble-Averaged Fields,” J. Fluid
Mech. 162, pp. 339, 1986.

[3] J. Villasenor and A. Vincent, “An Algorithm for
Space Recognition and Time Tracking of
Vorticity Tubes in Turbulence,” CVGIP: Image
Understanding 55:1, pp. 27, 1992.

[4] A. Globus, C. Levit, and T. Lasinski, “A Tool for
Visualizing the Topology of Three-Dimensional
Vector Fields,” Report RNR-91-017, NAS
Applied Research Office, NASA Ames Research
Center, 1991.

[5] D. C. Banks and B. A. Singer, “A Predictor-
Corrector Scheme for Vortex Identification,”
ICASE Report NO. 94-11, NASA CR-194882,
1994.

[6] D. C. Banks and B. A. Singer, “Vortex Tubes in
Turbulent Flows: Identification, Representation ,
Reconstruction,” ICASE Report No. 94-22,
NASA CR-194900, 1994.

[7] J. Jeong and F. Hussain, “On the Identification of
a Vortex,” J. Fluid Mech. 285, pp. 69, 1995.

[8] Robert Haimes, “pV3: A Distributed System for
Large-Scale Unsteady CFD Visualization,”
AIAA Paper 94-0321, 1994.

[9] D. D. Sujudi and R. Haimes,”Integration of
Particle Paths and Streamlines in a Spatially-
Decomposed Computation,” Parallel CFD
Conference, Pasadena, CA, June 26 - 28, 1995.

[10] M.. S. Chong, A. E. Perry, and B. J. Cantwell,
“A General Classification of Three-Dimensional
Flow Fields,” Phys. Fluids A, vol. 2, pp. 765-777,
May 1990.

[11] R. H. Abraham and C. D. Shaw, Dynamics: The
Geometry of Behavior, parts 1-4, Ariel Press,
Santa Cruz, CA., 1984.

[12] H. Vollmers, H. P. Kreplin, H. U. Meier,
”Separation and Vortical-Type Flow around a
Prolate Spheroid. Evaluation of Relevant
Parameters,” AGARD Conference Proceedings
No. 342.

[13] Dennis Jespersen and Creon Levit, “Numerical
Simulation of Flow Past a Tapered Cylinder,”
AIAA Paper 91-0751, 1991.

[14] S. A. Vermeersch, “Investigation of the F117A
Vortical Flow Characteristics,” Master’s Thesis,
Massachussetts Institute of Technology,
Department of Aeronautics and Astronautics,
May 1993.

[15] G. V. Bancroft, F. J. Merrit, T. C. Plessel, P. G.
Kelaita, R. K. McCabe, and A. Globus,”FAST: A
Multi-processing Environment for Visualization
of Computational Fluid Dynamics”, Proceedings
of Visualization ‘90, San Francisco, CA, Oct.
1990.

5

 Figure 2b A prism cell divided into 3 tetrahedra.

 Figure 2a A hexahedron (or structured-grid cell)
divided into 6 tetrahedra.

Figure 1 Flow pattern at a critical point
whose rate-of-deformation tensor has

1 real and a pair of complex-conjugate
eigenvalues.

 Figure 2c A pyramid cell divided into 2 tetrahedra.

6

 Figure 3 A sample result of an artificially-generated test case.

Figure 4a Flow past a tapered cylinder.
Shown are swirl flow centers found by the

algorithm.

Figure 4b flow past a tapered cylinder.
Swirl flow centers and streamlines

are shown.

streamline

center of
swirl flow

FLOW

Tapered
cylinder

7

Figure 4c Blow up of figure 4b.

Figure 5 Flow over a F117 fighter.
Swirl flow centers and streamlines are shown. Note: The

centers are not mirrored.

Figure 6b Result of pV3 swirl flow
finder on data set 1.

Figure 6a Result of FAST vortex core
finder on data set 1.

Integration veers
away from core

8

Figure 6d Result of pV3 swirl flow
finder on data set 2.

Figure 6c Result of FAST vortex core
finder on data set 2.

Figure 6f Result of pV3 swirl flow
finder on data set 3.

Figure 6e Result of FAST vortex core finder
on data set 3. Note that a streamline has also been
spawned here to indicate that the twist at the top of

the middle curve is actually outside the vortex.

Integration veers
away from core

