

Visualizing a Trillion-Cell Simulated CFD Solution on an

Engineering Workstation

Scott T. Imlay1, Craig Mackey2 and Dave Taflin3

Tecplot Inc., Bellevue, WA, 98006

The size and number of datasets analyzed by post-processing and visualization tools are growing with

Moore’s law. Conversely, the disk-read data transfer rate is only doubling every 36 months and is destined to

be the bottleneck for traditional post-processing architectures. To eliminate this bottleneck during post-

processing visualization and analysis, a subzone load-on-demand (SZL) visualization architecture has been

developed which loads only the data needed to create the desired plot. Based on the Moore’s law growth, the

largest CFD problems are expected to be using 1 trillion cells by 2030. In this paper, to prepare for this 2030

scenario, the isosurface for a simulated 1 trillion cell CFD dataset was visualized using the SZL technology.

With traditional visualization technology, this would require a super-computer, but with SZL it was possible

on an engineering workstation with 128GB of memory. The 120GB of memory used during this demonstration

is nearly two orders-of-magnitude less than the 8.5TB file size. The time and memory required to generate this

isosurface generally scales with 𝑶(𝒏
𝟐

𝟑), where 𝒏 is the number of cells in the grid.

Nomenclature

α = angle of attack

β = yaw angle

a = cylinder diameter

Cp = pressure coefficient

M = Mach number

n = number of points in the full grid

Re = Reynolds number

t = time

𝜏 = pseudo time

𝑣⃑ = velocity at a point in space

𝑣𝑖 = isosurface value of a variable

𝑣𝑑 = discriminant value of an interval tree root node or branch node

𝑣𝑚𝑖𝑛
𝑠 = minimum value of variable in subzone 𝑠

𝑣𝑚𝑎𝑥
𝑠 = maximum value of variable in subzone 𝑠

x, y, z = x-, y-, and z-coordinates

𝑥⃑ = (x, y, z) position in space

1 Chief Technology Officer, P.O. Box 52708, Bellevue, WA, Senior Member AIAA.
2 Senior Research Engineer, Research, P.O. Box 52708, Bellevue, WA.
3 Senior Software Development Engineer, P.O. Box 52708, Bellevue, WA.

https://www.tecplot.com/

Tecplot, Inc. www.tecplot.com info@tecplot.com

2

I. Introduction

HE application of computational fluid dynamics (CFD) in the aerospace design process has increased dramatically

over the last decade. This is due, in large part, to the relentless and continuing growth of computer performance.

In some cases the enhanced computer power is used to perform high-resolution CFD calculations to analyze the details

of complicated unsteady flow fields around complex configurations. In other cases it is used to create a virtual wind-

tunnel where hundreds or thousands of lower resolution CFD computations are performed to estimate the aerodynamic

properties of a prospective configuration throughout its operating envelope. In either case, the total amount of data

read during post processing is doubling every 18 months – in sync with Moore’s law.

These trends are consistent with the conclusions of the NASA CFD Visions 2030 Study18 which forecasts the need

for on-demand analysis and visualization of unsteady CFD problems sizes of 10 billion points by 2020, 100 billion

points by 2025 and 1 trillion cells by 2030 (Figure 1).

Figure 1. Technology Roadmap from NASA CFD Vision 2030 Study18. Read the PDF.

The expected dramatic growth of CFD problem size poses a significant challenge for developers of CFD visual

analysis software. To prepare for this challenge, Tecplot Inc. set an internal goal to visualize a finite-element dataset

containing one trillion tetrahedral cells, using slices, isosurfaces, and streamtraces. Furthermore, Tecplot’s goal was

to do this visualization using an engineering workstation. The workstation was a Dell Precision T7610 with dual 8-

core Intel Xeon processors, an NVIDIA Quadro K4000 video card, 128GB of memory, and a 16TB Raid5 external

hard-disk array. This system is probably a little more advanced than what is sitting beside your desk, but systems with

these capabilities will be common-place in the near future. When purchased in 2015, this computer system costs less

than $10,000.

This paper describes the three-year effort by Tecplot Inc. to complete the trillion-cell challenge. The following sections

will detail computer-system and network trends, the new software and technologies that were developed to deal with

these trends, and the results of the trillion-cell visualization.

T

http://www.tecplot.com/
http://download.tecplot.com/docs/NASA-2030-Vision-Study.pdf
https://ntrs.nasa.gov/search.jsp?R=20140003093
http://download.tecplot.com/docs/NASA-2030-Vision-Study.pdf
http://download.tecplot.com/docs/NASA-2030-Vision-Study.pdf

Tecplot, Inc. www.tecplot.com info@tecplot.com

3

A. Computer I/O and Network Performance Trends

CFD data is generally stored on arrays of hard disk drives. Over the last two decades, the storage capacity of hard

disks has grown in accordance with Kryder’s law - doubling every 12 months. This is more than sufficient to keep up

with the growth in dataset size. Unfortunately, the sustained rate at which data can be read from the hard disk is

growing much slower – doubling every 36 months1. This is because sustained data transfer rate grows with the lineal

density of the magnetic dots on the hard disk while storage capacity grows with the areal density (roughly the square

of the lineal density). While hard disk capacity is keeping up with dataset size, the speed at which we can read the

data is not.

In the past, the primary bottleneck in visualization software performance was network speed. Over the last decade,

the speed of Local Area Networks (LANs) has doubled every 2 years on average. It doesn’t change that often, but

upgrades tend to yield an order-of-magnitude increase in bandwidth (100Mb/s to 1Gb/s, for example). Likewise, Wide

Area Network (WAN) performance is also doubling every 2 years, although it lags substantially behind LAN

performance, and internet bandwidth is generally worse than WAN bandwidth. The bandwidth for both LANs and

WANs are growing more slowly than dataset size, but much faster than sustained disk-read data transfer rates. For

internet connections, network bandwidth is still generally the bottleneck.

Given these trends, a simple analysis of visualization system performance can be performed. Assuming initial values

of 100M cells in 2005, 100MB/s (1Gb/s) LAN in 2006, and 75 MB/s sustained read bandwidth for the hard-disk in

2006. The trends in time to load a large dataset are given in Figure 2. Note that the load-time ultimately becomes

dominated by the hard-disk sustained read data transfer rate, with the cross-over date a function of the network type

(bandwidth).

Figure 2. Time to transfer and load a large CFD dataset

These trends have a significant impact on the optimal visualization architecture. Traditional client-server architectures

were designed to overcome network bandwidth constraints. In these architectures, the data is loaded on a remote

computer with a high-bandwidth access to the data, important data abstractions are extracted, and the geometry and

data for these abstractions is transferred across the slow network to a local client. In this context, “abstractions” may

include model geometry, slices, isosurfaces, streamlines, vortex cores, and any other one- or two-dimensional data

extraction the user may desire. A modification of the client-server architecture is to render the plot remotely and

transfer the image at video-like frame-rates. These client-server architectures are important for overcoming network

http://www.tecplot.com/

Tecplot, Inc. www.tecplot.com info@tecplot.com

4

bandwidth limitations but do nothing to overcome the new bottleneck, sustained disk-read data transfer rates

(SDRDTR).

The current hardware-based solution to the SDRDTR bottleneck is to increase the number of spindles (hard-disks)

used in the parallel file system. If the number of spindles in the file system doubles every 3 years or so, the time to

read a data file will remain constant. However, increasing the number of disks in the parallel file system is counter-

intuitive, as the hard disk capacity will match the file size increases without adding disks. As such, that solution will

likely meet with some resistance. Longer-term hardware-based solutions, such as solid-state disks (SSDs) are not yet

economically viable for collections of large CFD datasets.

The software-based solution to the SDRDTR bottleneck is to read and write less data. Generally, only a small

percentage of the total dataset is needed to create the abstractions the user wishes to view, so this solution seems

viable. To be sustainable, the percentage of the dataset written by the CFD code and loaded into the visual analysis

application must decrease over time (halved every three to four years). This solution also has other benefits, like

reduced memory requirements and reduced network bandwidth requirements. This is one architectural approach taken

by Tecplot, Inc. for large-data visualization.

In a previous papers11, a new architecture was described for visualizing large CFD datasets. It was based on loading

subzones (spatially correlated sub-segments of the full dataset of less than 256 nodes or cells) on demand (only as

needed). To support this algorithm, variable min-max trees are created to rapidly select the needed subzones. The

architecture is sustainable: for slices and isosurfaces, the number of subzones loaded is approximately 𝑂(𝑛
2

3) and for

streamtraces it is approximately 𝑂(𝑛
1

3). In a more recent paper20, the same benefits have been demonstrated for a

subzone-based in-situ technique where only those subzones needed to create desired abstractions are written to file

from the CFD code. Once subzone in-situ and subzone load-on-demand are adopted, the network bandwidth and

latency often become the dominant bottleneck, particularly during the visual analysis of remote data. In our most

recent paper, a subzone-based client-server architecture is presented to overcome network bandwidth and latency

limitations. These techniques, and more, are used in the current trillion-cell challenge.

II. Approach

A. Related Work

The work is based on the subzone load-on-demand technology described in a series of previous papers and summarized

in the following section.

B. Subzone-Based Architecture

The subzone load-on-demand technology is described in the following three subsections. The basic technology,

described in the first subsection below, dramatically reduces the time and memory required to visualize a large dataset.

Subzone-based in-situ, described in the second subsection, is used to reduce the time required to write the datafile

from a CFD code running a very large case. The final subsection describes subzone-based client-server, which is used

to visualized data on a remote system.

1. Subzone Load-on-Demand

The basic subzone load-on-demand architecture was described in a previous paper11 and is summarized here. The

approach requires a file whose data is partitioned into subzones of no-more-than 256 nodes each and cell subzones of

no-more-than 256 cells each. In the trillion-cell dataset, the variable data is stored at the nodes of the tetrahedra, so

the only data stored in the cell subzones is the connectivity (the numbers of the nodes that make up each cell). This

subzone load-on-demand (SZL) files is composed of a header which contains a tree of variable min/max values for

each variable of each node and cell subzone followed by the actual node subzone variable data and the cell subzone

connectivity arrays. These connectivity arrays are compressed21 by replacing the full node numbers with a (node-

http://www.tecplot.com/

Tecplot, Inc. www.tecplot.com info@tecplot.com

5

subzone, subzone node offset) pair. The subzone node offset is an 8-bit integer (256 nodes per subzone) and the node-

subzone is a reduced precision offset into a look-up table of node subzones referenced by that cell subzone. By using

the reduced precision offset instead of the actual node subzone numbers, the size of the data file can be reduced by up

to 50% for tetrahedral finite-element data.

The variable min/max trees allow the software to only load those node and cell subzones necessary to create the

desired slices, isosurfaces, or streamtraces. For isosurface extraction, the software loads the relevant isosurface

variable min/max tree, searches for those node and cell subzones with a min-value less than the isosurface value, and

a max-value greater than the isosurface value, and loads only those subzones. The triangles making up the isosurface

are then extracted using a standard marching-cubes (or marching-tets) algorithm. Slices are treated as isosurfaces of a

coordinate variable. For each step of a streamtrace, it searches for node and cell subzones that contain the required

(x,y,z) point.

The total size of data required to generate a particular isosurface generally scales as approximately 𝑂(𝑛
2

3), where n is

the number of cells in the grid. The benefit of reduced data transfer thus increases proportionally as problems grow

larger. For streamtrace generation, the required data generally scales with roughly 𝑂(𝑛
1

3).

2. Subzone-Based In-Situ

The I/O bottleneck is also a problem when writing data from a CFD code. To reduce the required time to write the

data, the CFD code can write just those subzones needed for the desired visualization (or set of visualizations). The

min/max trees are also compressed to eliminate entries for subzones that are not written to the file, so the files are

generally much smaller than if the full dataset were written.

3. Subzone-based Client-Server

The subzone-based client-server approach uses a server process on a remote machine to load subzones from a data

file local to the server machine and transfer those subzones over the network to client software running on the user’s

local machine. The server benefits from the same advantages that the client does in the data-local case—it requires

only enough memory to load the necessary subzones, and reads only those subzones from disk. This contrasts with

other client-server architectures where the server must load the grid plus some number of solution variables in their

entirety in order to extract the desired surfaces. The server transfers the subzones required to encompass the desired

surface to the client, which then extracts and renders the surface.

Another advantage of subzone-based client-server is that it allows small adjustments to the surface location with no,

or limited additional data from the server. As the surface is moved, only those additional subzones required to

encompass the surface’s new location are transferred from the server.

Consistent with data-local subzone loading, total size of data required to display a particular surface generally scales

as approximately 𝑂(𝑛
2

3), where n is the number of nodes or cells in the grid. The benefit of reduced data transfer thus

increases proportionally as problems grow larger.

For streamtrace generation, the required data generally scales with roughly 𝑂(𝑛
1

3). There is a performance penalty for

streamtraces, however, because the client cannot know a priori which subzones will be required to enclose the

complete path of the streamtrace given only its starting location. The client must request subzones to encompass the

starting location and integrate the velocity field from there until it encounters subzones not yet loaded, then request

those additional subzones, repeating the process until the integration is complete (by whatever criteria the user has

specified). Each of these requests incurs a latency penalty.

III. Results

The subzone load-on-demand was tested for isosurface generation on a 1 trillion cell (167 billion node) simulated

CFD dataset shown in Figure 3. Since there is currently nobody doing trillion cell CFD solutions, a simple simulated

http://www.tecplot.com/

Tecplot, Inc. www.tecplot.com info@tecplot.com

6

dataset is used. The geometry is a cylinder and the isosurface variable is a simple quadratic polyhedral. The data set

is 8.5 TB spread across 16 files. It took 120 GB of memory and about 45 minutes to render. The isosurface is 190

million cells. The orange lines are the bounding boxes of the 1024 zones that make up the data.

 .

Figure 3. Isosurface for the trillion-cell tetrahedral dataset. Read the Trillion-Cell Challenge blog series.

To study the scaling of the algorithm with grid size, the same isosurface was generated for a range of grid sizes from

1 thousand cells to 300 billion cells. A set of 60 streamtraces was also generated for the same datasets. The resulting

time and memory required is shown in Figure 4. These are log-log plots, so the exponent 𝑚 in the scaling 𝑂(𝑛𝑚),

where 𝑛 is the number of cells, is the slope of the line. For convenience, the lines for linear 𝑂(𝑛) scaling and 𝑂(𝑛
2

3)

scaling are shown. The disk cache has a big impact on data-load performance, so the plots show both uncached results

(first load after a restart of the computer) and cached results (final load after loading several times in a row). As you

can see, the time and memory scale with 𝑂(𝑛
2

3) up through 100 billion cells. After that, the cached results for

isosurfaces and streamtraces converge to the uncached results as the disk cache becomes overwhelmed due to the

problem size.

http://www.tecplot.com/
https://www.tecplot.com/category/tecplot-blog/trillion-cell-challenge/
https://www.tecplot.com/category/tecplot-blog/trillion-cell-challenge/

Tecplot, Inc. www.tecplot.com info@tecplot.com

7

Figure 4. Isosurface for the trillion-cell tetrahedral dataset. Read the Blog.

As a final note, the size of an in-situ data file for the isosurface of the trillion-cell case would be roughly the same as

the 120 GB required to visualization the isosurface. This is nearly two orders-of-magnitude smaller than the full trillion

cell dataset.

IV. Conclusion

The largest CFD problems are expected to be using 1 trillion cells by 2030. To prepare for this scenario, the isosurface

for a simulated 1 trillion cell CFD dataset was visualized using the subzone load-on-demand technology. With

traditional visualization technology, this would require a super-computer, but with subzone load-on-demand it was

possible on an engineering workstation with 128GB of memory. The 120GB of memory used during this

demonstration is nearly two orders-of-magnitude less than the 8.5TB file size. The time and memory required to

generate this isosurface is shown to scale with 𝑂(𝑛
2

3), where 𝑛 is the number of cells in the grid.

References
1“Hitachi Global Storage Technologies,” http://www.hitachigst.com/hdd/technolo/overview/storagetechchart.html.
2Moran, P.J., “Field Model: An Object-Oriented Data Model for Fields,” NASA TR NAS-01-005, 2005.
3Chiang, Y.-J., ElSana, J., Lindstrom, P., Pajarolo, R., and Silva, C.T., “Out-of-Core Algorithms for Scientific Visualization

and Computer Graphics,” Tutorial Course Notes, IEEE Visualization 2003.
4Chiang, Y.-J., and Silva, C.T., “External Memory techniques for Isosurface Extraction in Scientific Visualization,” External

Memory Algorithms and Visualization, DIMACS Series, 50:247-277, 1999.
5Chiang, Y.-J., and Silva, C.T., “Interactive Out-Of-Core Isosurface Extraction,” IEEE Visualization 98, 167-174, Oct. 1998.
6Ueng, S.-K., Sikorski, C., and Ma, K.-L., “Out-of-Core Streamline Visualization on Large Unstructured Meshes,” IEEE

Transactions on Visualization and Computer Graphics, 3(4):370-380, Oct. 1997.
7Fox, G. C. ``A review of automatic load balancing and decomposition methods for the hypercube,'' in M. Schultz, editor,

Numerical Algorithms for Modern Parallel Computer Architectures, pages 63-76. Springer-Verlag, New York, 1988. Caltech

Report C3P-385b.
8de Ronde, J.F., Schoneveld, A. and Sloot, P.M.A., “Load Balancing by Redundant Decomposition and Mapping,”, Future

Generation Computer Systems, 12(5):391-406, 1997.
9Weinkauf, T. and Theisel, H., “Streak Lines as Tangent Curves of a Derived Vector Field,”, IEEE Transactions on

Visualization and Computer Graphics, Vol. 16, Issue 2, Oct 2010.
10Moran, P.J., Henze, C., “Large Field Visualization With Demand-Driven Calculation,” ieee_vis, pp.2, 10th IEEE Visualization

1999 (VIS ’99), 1999.
11Imlay, S.T., and Mackey, C.A., “Improved Performance of Large Data Visualization using Sub-Zone Load-On-Demand,”

AIAA 2011-1161, Jan. 2013.
12Slotnick, J.P., Hannon, J.A., and Chaffin, M., “Overview of the First AIAA High Lift Prediction Workshop,” AIAA 2011-

0862, Jan. 2011.

http://www.tecplot.com/
https://www.tecplot.com/2015/12/02/one-trillion-cell-challenge-successfully-complete/
http://www.hitachigst.com/hdd/technolo/overview/storagetechchart.html

Tecplot, Inc. www.tecplot.com info@tecplot.com

8

13Rumsey, C.L., Long, M., and Stuever, R.A., and Wayman, T.R.., “Summary of the First AIAA CFD High Lift Prediction

Workshop,” AIAA 2011-0939, Jan. 2011.
14Isenburg, M. “Compressing Polygon Mesh Connectivity with Degree Duality Prediction,” Graphics Interface, 2002.
15Kronrod, B. and Gotsman, C., “Efficient Coding of Nontriangular Mesh Connecitvity,” Graphical Method, 63, pp 263-275,

2001.
16Pajarola, R. Rossignac, J. Szymczak, A., “Implant Sprays: Compression of Progressive Tetrahedral Mesh Connectivity,”

Proceedings of IEEE Visualization 99, 1999.
17Gumhold, S, Guthe, S, and Strasser, W., “Tetrahedral Mesh Compression with the Cut-Border Machine,” Proceedings of

IEEE Visualization 99, 1999.
18Slotnick, J., Khodadoust, A., Alonso, J., Darmofal, D., Gropp, W., Lurie, E. and Mavriplis, D., “CFD Vision 2030 Study: A

Path to Revolutionary Computational Data Science,” NASA/CR-2014-218178, 2014.
19Mooreland, K., “The Tensions of In Situ Visualization,” IEEE Computer Graphics and Applications, 2016, Vol. 36, Issue 2,

Mar.-Apr. 2016.
20Imlay, S.T., and Mackey, C.A., “Subzone-Based In Situ Technique for I/O Efficient Analysis and Exploratory Visualization,”

AIAA 2017-3806, Jun. 2017.
21Imlay, S.T., Taflin, D.E., and Mackey, C.A., “Subzone-Based Client-Server Technique for I/O Efficient Analysis and

Exploratory Visualization,” AIAA 2018-????, Jan. 2018.

http://www.tecplot.com/

