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The size and number of datasets analyzed by post-processing and visualization tools are growing with 

Moore’s law. Conversely, the disk-read data transfer rate is only doubling every 36 months and is destined to 

be the bottleneck for traditional post-processing architectures. To eliminate this bottleneck during post-

processing visualization and analysis, a subzone load-on-demand (SZL) visualization architecture has been 

developed which loads only the data needed to create the desired plot. Based on the Moore’s law growth, the 

largest CFD problems are expected to be using 1 trillion cells by 2030. In this paper, to prepare for this 2030 

scenario, the isosurface for a simulated 1 trillion cell CFD dataset was visualized using the SZL technology. 

With traditional visualization technology, this would require a super-computer, but with SZL it was possible 

on an engineering workstation with 128GB of memory. The 120GB of memory used during this demonstration 

is nearly two orders-of-magnitude less than the 8.5TB file size. The time and memory required to generate this 

isosurface generally scales with 𝑶(𝒏
𝟐

𝟑), where 𝒏 is the number of cells in the grid.  

Nomenclature 

α = angle of attack 

β = yaw angle 

a = cylinder diameter 

Cp = pressure coefficient 

M = Mach number 

n = number of points in the full grid 

Re = Reynolds number 

t = time 

𝜏 = pseudo time 

𝑣⃑ = velocity at a point in space 

𝑣𝑖 = isosurface value of a variable 

𝑣𝑑 = discriminant value of an interval tree root node or branch node 

𝑣𝑚𝑖𝑛
𝑠  = minimum value of variable in subzone 𝑠 

𝑣𝑚𝑎𝑥
𝑠  = maximum value of variable in subzone 𝑠 

x, y, z = x-, y-, and z-coordinates 

𝑥⃑ = (x, y, z) position in space 

                                                           
1 Chief Technology Officer, P.O. Box 52708, Bellevue, WA, Senior Member AIAA. 
2 Senior Research Engineer, Research, P.O. Box 52708, Bellevue, WA. 
3 Senior Software Development Engineer, P.O. Box 52708, Bellevue, WA. 

https://www.tecplot.com/


 

_____________________________________________________________________________________________ 

Tecplot, Inc.  www.tecplot.com info@tecplot.com 
 

 

2 

 

I. Introduction 

HE application of computational fluid dynamics (CFD) in the aerospace design process has increased dramatically 

over the last decade. This is due, in large part, to the relentless and continuing growth of computer performance. 

In some cases the enhanced computer power is used to perform high-resolution CFD calculations to analyze the details 

of complicated unsteady flow fields around complex configurations. In other cases it is used to create a virtual wind-

tunnel where hundreds or thousands of lower resolution CFD computations are performed to estimate the aerodynamic 

properties of a prospective configuration throughout its operating envelope. In either case, the total amount of data 

read during post processing is doubling every 18 months – in sync with Moore’s law. 

 

These trends are consistent with the conclusions of the NASA CFD Visions 2030 Study18 which forecasts the need 

for on-demand analysis and visualization of unsteady CFD problems sizes of 10 billion points by 2020, 100 billion 

points by 2025 and 1 trillion cells by 2030 (Figure 1). 

 

 

 
Figure 1. Technology Roadmap from NASA CFD Vision 2030 Study18. Read the PDF. 

The expected dramatic growth of CFD problem size poses a significant challenge for developers of CFD visual 

analysis software. To prepare for this challenge, Tecplot Inc. set an internal goal to visualize a finite-element dataset 

containing one trillion tetrahedral cells, using slices, isosurfaces, and streamtraces. Furthermore, Tecplot’s goal was 

to do this visualization using an engineering workstation. The workstation was a Dell Precision T7610 with dual 8-

core Intel Xeon processors, an NVIDIA Quadro K4000 video card, 128GB of memory, and a 16TB Raid5 external 

hard-disk array. This system is probably a little more advanced than what is sitting beside your desk, but systems with 

these capabilities will be common-place in the near future. When purchased in 2015, this computer system costs less 

than $10,000.  

 

This paper describes the three-year effort by Tecplot Inc. to complete the trillion-cell challenge. The following sections 

will detail computer-system and network trends, the new software and technologies that were developed to deal with 

these trends, and the results of the trillion-cell visualization.   

 

 

T 

http://www.tecplot.com/
http://download.tecplot.com/docs/NASA-2030-Vision-Study.pdf
https://ntrs.nasa.gov/search.jsp?R=20140003093
http://download.tecplot.com/docs/NASA-2030-Vision-Study.pdf
http://download.tecplot.com/docs/NASA-2030-Vision-Study.pdf
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A. Computer I/O and Network Performance Trends 

 

CFD data is generally stored on arrays of hard disk drives. Over the last two decades, the storage capacity of hard 

disks has grown in accordance with Kryder’s law - doubling every 12 months. This is more than sufficient to keep up 

with the growth in dataset size. Unfortunately, the sustained rate at which data can be read from the hard disk is 

growing much slower – doubling every 36 months1. This is because sustained data transfer rate grows with the lineal 

density of the magnetic dots on the hard disk while storage capacity grows with the areal density (roughly the square 

of the lineal density). While hard disk capacity is keeping up with dataset size, the speed at which we can read the 

data is not. 

 

In the past, the primary bottleneck in visualization software performance was network speed. Over the last decade, 

the speed of Local Area Networks (LANs) has doubled every 2 years on average. It doesn’t change that often, but 

upgrades tend to yield an order-of-magnitude increase in bandwidth (100Mb/s to 1Gb/s, for example). Likewise, Wide 

Area Network (WAN) performance is also doubling every 2 years, although it lags substantially behind LAN 

performance, and internet bandwidth is generally worse than WAN bandwidth. The bandwidth for both LANs and 

WANs are growing more slowly than dataset size, but much faster than sustained disk-read data transfer rates. For 

internet connections, network bandwidth is still generally the bottleneck. 

 

Given these trends, a simple analysis of visualization system performance can be performed. Assuming initial values 

of 100M cells in 2005, 100MB/s (1Gb/s) LAN in 2006, and 75 MB/s sustained read bandwidth for the hard-disk in 

2006. The trends in time to load a large dataset are given in Figure 2. Note that the load-time ultimately becomes 

dominated by the hard-disk sustained read data transfer rate, with the cross-over date a function of the network type 

(bandwidth). 

  

 
Figure 2. Time to transfer and load a large CFD dataset 

 

These trends have a significant impact on the optimal visualization architecture. Traditional client-server architectures 

were designed to overcome network bandwidth constraints. In these architectures, the data is loaded on a remote 

computer with a high-bandwidth access to the data, important data abstractions are extracted, and the geometry and 

data for these abstractions is transferred across the slow network to a local client. In this context, “abstractions” may 

include model geometry, slices, isosurfaces, streamlines, vortex cores, and any other one- or two-dimensional data 

extraction the user may desire. A modification of the client-server architecture is to render the plot remotely and 

transfer the image at video-like frame-rates. These client-server architectures are important for overcoming network 

http://www.tecplot.com/
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bandwidth limitations but do nothing to overcome the new bottleneck, sustained disk-read data transfer rates 

(SDRDTR). 

 

The current hardware-based solution to the SDRDTR bottleneck is to increase the number of spindles (hard-disks) 

used in the parallel file system. If the number of spindles in the file system doubles every 3 years or so, the time to 

read a data file will remain constant. However, increasing the number of disks in the parallel file system is counter-

intuitive, as the hard disk capacity will match the file size increases without adding disks. As such, that solution will 

likely meet with some resistance. Longer-term hardware-based solutions, such as solid-state disks (SSDs) are not yet 

economically viable for collections of large CFD datasets.  

 

The software-based solution to the SDRDTR bottleneck is to read and write less data. Generally, only a small 

percentage of the total dataset is needed to create the abstractions the user wishes to view, so this solution seems 

viable. To be sustainable, the percentage of the dataset written by the CFD code and loaded into the visual analysis 

application must decrease over time (halved every three to four years). This solution also has other benefits, like 

reduced memory requirements and reduced network bandwidth requirements. This is one architectural approach taken 

by Tecplot, Inc. for large-data visualization. 

 

In a previous papers11, a new architecture was described for visualizing large CFD datasets. It was based on loading 

subzones (spatially correlated sub-segments of the full dataset of less than 256 nodes or cells) on demand (only as 

needed). To support this algorithm, variable min-max trees are created to rapidly select the needed subzones. The 

architecture is sustainable: for slices and isosurfaces, the number of subzones loaded is approximately 𝑂(𝑛
2

3) and for 

streamtraces it is approximately 𝑂(𝑛
1

3). In a more recent paper20, the same benefits have been demonstrated for a 

subzone-based in-situ technique where only those subzones needed to create desired abstractions are written to file 

from the CFD code. Once subzone in-situ and subzone load-on-demand are adopted, the network bandwidth and 

latency often become the dominant bottleneck, particularly during the visual analysis of remote data. In our most 

recent paper, a subzone-based client-server architecture is presented to overcome network bandwidth and latency 

limitations. These techniques, and more, are used in the current trillion-cell challenge. 

 

 

II. Approach 

 

A. Related Work 

 

The work is based on the subzone load-on-demand technology described in a series of previous papers and summarized 

in the following section.  

B. Subzone-Based Architecture 

 

The subzone load-on-demand technology is described in the following three subsections. The basic technology, 

described in the first subsection below, dramatically reduces the time and memory required to visualize a large dataset. 

Subzone-based in-situ, described in the second subsection, is used to reduce the time required to write the datafile 

from a CFD code running a very large case. The final subsection describes subzone-based client-server, which is used 

to visualized data on a remote system.  

 

1. Subzone Load-on-Demand 

The basic subzone load-on-demand architecture was described in a previous paper11 and is summarized here. The 

approach requires a file whose data is partitioned into subzones of no-more-than 256 nodes each and cell subzones of 

no-more-than 256 cells each. In the trillion-cell dataset, the variable data is stored at the nodes of the tetrahedra, so 

the only data stored in the cell subzones is the connectivity (the numbers of the nodes that make up each cell). This 

subzone load-on-demand (SZL) files is composed of a header which contains a tree of variable min/max values for 

each variable of each node and cell subzone followed by the actual node subzone variable data and the cell subzone 

connectivity arrays. These connectivity arrays are compressed21 by replacing the full node numbers with a (node-

http://www.tecplot.com/
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subzone, subzone node offset) pair. The subzone node offset is an 8-bit integer (256 nodes per subzone) and the node-

subzone is a reduced precision offset into a look-up table of node subzones referenced by that cell subzone. By using 

the reduced precision offset instead of the actual node subzone numbers, the size of the data file can be reduced by up 

to 50% for tetrahedral finite-element data. 

 

The variable min/max trees allow the software to only load those node and cell subzones necessary to create the 

desired slices, isosurfaces, or streamtraces. For isosurface extraction, the software loads the relevant isosurface 

variable min/max tree, searches for those node and cell subzones with a min-value less than the isosurface value, and 

a max-value greater than the isosurface value, and loads only those subzones. The triangles making up the isosurface 

are then extracted using a standard marching-cubes (or marching-tets) algorithm. Slices are treated as isosurfaces of a 

coordinate variable. For each step of a streamtrace, it searches for node and cell subzones that contain the required 

(x,y,z) point. 

  

The total size of data required to generate a particular isosurface generally scales as approximately 𝑂(𝑛
2

3), where n is 

the number of cells in the grid. The benefit of reduced data transfer thus increases proportionally as problems grow 

larger. For streamtrace generation, the required data generally scales with roughly 𝑂(𝑛
1

3).   

 

 

 

2. Subzone-Based In-Situ 

The I/O bottleneck is also a problem when writing data from a CFD code. To reduce the required time to write the 

data, the CFD code can write just those subzones needed for the desired visualization (or set of visualizations). The 

min/max trees are also compressed to eliminate entries for subzones that are not written to the file, so the files are 

generally much smaller than if the full dataset were written. 

 

3. Subzone-based Client-Server 

The subzone-based client-server approach uses a server process on a remote machine to load subzones from a data 

file local to the server machine and transfer those subzones over the network to client software running on the user’s 

local machine. The server benefits from the same advantages that the client does in the data-local case—it requires 

only enough memory to load the necessary subzones, and reads only those subzones from disk. This contrasts with 

other client-server architectures where the server must load the grid plus some number of solution variables in their 

entirety in order to extract the desired surfaces. The server transfers the subzones required to encompass the desired 

surface to the client, which then extracts and renders the surface. 

 

Another advantage of subzone-based client-server is that it allows small adjustments to the surface location with no, 

or limited additional data from the server. As the surface is moved, only those additional subzones required to 

encompass the surface’s new location are transferred from the server. 

 

Consistent with data-local subzone loading, total size of data required to display a particular surface generally scales 

as approximately 𝑂(𝑛
2

3), where n is the number of nodes or cells in the grid. The benefit of reduced data transfer thus 

increases proportionally as problems grow larger.  

 

For streamtrace generation, the required data generally scales with roughly 𝑂(𝑛
1

3). There is a performance penalty for 

streamtraces, however, because the client cannot know a priori which subzones will be required to enclose the 

complete path of the streamtrace given only its starting location. The client must request subzones to encompass the 

starting location and integrate the velocity field from there until it encounters subzones not yet loaded, then request 

those additional subzones, repeating the process until the integration is complete (by whatever criteria the user has 

specified). Each of these requests incurs a latency penalty. 

 

 

III. Results 

The subzone load-on-demand was tested for isosurface generation on a 1 trillion cell (167 billion node) simulated 

CFD dataset shown in Figure 3. Since there is currently nobody doing trillion cell CFD solutions, a simple simulated 

http://www.tecplot.com/
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dataset is used. The geometry is a cylinder and the isosurface variable is a simple quadratic polyhedral. The data set 

is 8.5 TB spread across 16 files. It took 120 GB of memory and about 45 minutes to render. The isosurface is 190 

million cells. The orange lines are the bounding boxes of the 1024 zones that make up the data. 

 .  

 
Figure 3. Isosurface for the trillion-cell tetrahedral dataset. Read the Trillion-Cell Challenge blog series. 

 

To study the scaling of the algorithm with grid size, the same isosurface was generated for a range of grid sizes from 

1 thousand cells to 300 billion cells. A set of 60 streamtraces was also generated for the same datasets. The resulting 

time and memory required is shown in Figure 4. These are log-log plots, so the exponent 𝑚 in the scaling 𝑂(𝑛𝑚), 

where 𝑛 is the number of cells, is the slope of the line. For convenience, the lines for linear 𝑂(𝑛) scaling and 𝑂(𝑛
2

3) 

scaling are shown. The disk cache has a big impact on data-load performance, so the plots show both uncached results 

(first load after a restart of the computer) and cached results (final load after loading several times in a row). As you 

can see, the time and memory scale with 𝑂(𝑛
2

3) up through 100 billion cells. After that, the cached results for 

isosurfaces and streamtraces converge to the uncached results as the disk cache becomes overwhelmed due to the 

problem size. 

 

http://www.tecplot.com/
https://www.tecplot.com/category/tecplot-blog/trillion-cell-challenge/
https://www.tecplot.com/category/tecplot-blog/trillion-cell-challenge/
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Figure 4. Isosurface for the trillion-cell tetrahedral dataset. Read the Blog. 

As a final note, the size of an in-situ data file for the isosurface of the trillion-cell case would be roughly the same as 

the 120 GB required to visualization the isosurface. This is nearly two orders-of-magnitude smaller than the full trillion 

cell dataset.  

 

IV. Conclusion 

The largest CFD problems are expected to be using 1 trillion cells by 2030. To prepare for this scenario, the isosurface 

for a simulated 1 trillion cell CFD dataset was visualized using the subzone load-on-demand technology. With 

traditional visualization technology, this would require a super-computer, but with subzone load-on-demand it was 

possible on an engineering workstation with 128GB of memory. The 120GB of memory used during this 

demonstration is nearly two orders-of-magnitude less than the 8.5TB file size. The time and memory required to 

generate this isosurface is shown to scale with 𝑂(𝑛
2

3), where 𝑛 is the number of cells in the grid.  
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