
A Subzone-Based Client-Server Technique for I/O Efficient
Analysis and Visualization of Large Remote Datasets

Scott T. Imlay1, Dave Taflin2 and Craig Mackey3

Tecplot Inc., Bellevue, WA, 98006

The size and number of datasets analyzed by post-processing and visualization tools are
growing with Moore’s law. Conversely, the disk-read data transfer rate is only doubling every
36 months and is destined to be the bottleneck for traditional post-processing architectures.
To eliminate this bottleneck during loading post-processing visualization and analysis, a
subzone load-on-demand (SZL) visualization architecture has been developed which loads
only the data needed to create the desired plot. The same I/O bottleneck also affects the
transfer of datasets from remote to local storage systems. In this paper, the SZL technique is
used to create a client-server architecture where only the volume subzones needed to create
the plot are transferred from the remote computer. The new technique differs from traditional
client-server architectures where surface-data, such as slices or isosurfaces, are extracted by
the remote server and transferred to the local client. The subzone-based client-server method
transfers more data initially but can re-use the transferred volume subzones for other data
extractions during further exploration. The new technique was tested with slices and
isosurfaces. The initial data transfer from the server was found to be 3-17 times more than
equivalent plots that transfer only surfaces, but one to two orders of magnitude less than the
full volume data size. Server memory usage was substantially reduced compared with
traditional client-server techniques.

Nomenclature
= angle of attack
= yaw angle

a = cylinder diameter
Cp = pressure coefficient
M = Mach number
n = number of points in the full grid
Re = Reynolds number
t = time

= pseudo time
= velocity at a point in space
= isosurface value of a variable
= discriminant value of an interval tree root node or branch node
= minimum value of variable in subzone
= maximum value of variable in subzone

x, y, z = x-, y-, and z-coordinates
= (x, y, z) position in space

1 Chief Technology Officer, P.O. Box 52708, Bellevue, WA, Senior Member AIAA.
2 Senior Software Development Engineer, P.O. Box 52708, Bellevue, WA.
3 Senior Research Engineer, Research, P.O. Box 52708, Bellevue, WA.

Tecplot, Inc. www.tecplot.com info@tecplot.com

2

I. Introduction
HE application of computational fluid dynamics (CFD) in the aerospace design process has increased dramatically
over the last decade. This is due, in large part, to the relentless and continuing growth of computer performance.

In some cases, the enhanced computer power is used to perform high-resolution CFD calculations to analyze the
details of complicated unsteady flow fields around complex configurations. In other cases, it is used to create a virtual
wind-tunnel where hundreds or thousands of lower resolution CFD computations are performed to estimate the
aerodynamic properties of a prospective configuration throughout its operating envelope. In either case, the total
amount of data read during post processing is doubling every 18 months – in sync with Moore’s law.

The data is generally stored on arrays of hard disk drives. Over the last two decades, the storage capacity of hard disks
has grown in accordance with Kryder’s law - doubling every 12 months. This is more than sufficient to keep up with
the growth in dataset size. Unfortunately, the sustained rate at which data can be read from the hard disk is growing
much slower – doubling every 36 months1. This is because sustained data transfer rate grows with the lineal density
of the magnetic dots on the hard disk while storage capacity grows with the areal density (roughly the square of the
lineal density). While hard disk capacity is keeping up with dataset size, the speed at which we can read the data is
not.

In the past, the primary bottleneck in visualization software performance was network speed. Over the last decade,
the speed of Local Area Networks (LANs) has doubled every 2 years on average. It doesn’t change that often, but
upgrades tend to yield an order-of-magnitude increase in bandwidth (100Mb/s to 1Gb/s, for example). Likewise, Wide
Area Network (WAN) performance is also doubling every 2 years, although it lags substantially behind LAN
performance, and internet bandwidth is generally worse than WAN bandwidth. The bandwidth for both LANs and
WANs are growing more slowly than dataset size, but much faster than sustained disk-read data transfer rates. For
internet connections, network bandwidth is still generally the bottleneck.

Given these trends, a simple analysis of visualization system performance can be performed. Assuming initial values
of 100M cells in 2005, 100MB/s (1Gb/s) LAN in 2006, and 75 MB/s sustained read bandwidth for the hard-disk in
2006. The trends in time to load a large dataset are given in Figure 1. Note that the load-time ultimately becomes
dominated by the hard-disk sustained read data transfer rate, with the cross-over date a function of the network type
(bandwidth).

Figure 1. Time to transfer and load a large CFD dataset

T

Tecplot, Inc. www.tecplot.com info@tecplot.com

3

These trends are consistent with the conclusions of the NASA CFD Visions 2030 Study18 which forecasts the need
for on demand analysis and visualization of unsteady CFD problems sizes of 10 billion points by 2020 and 100 billion
points by 2025 (Figure 2).

Figure 2. Technology Roadmap from NASA CFD Vision 2030 Study18.

These trends have a significant impact on the optimal visualization architecture. Traditional client-server architectures
were designed to overcome network bandwidth constraints. In these architectures, the data is loaded on a remote
compute with a high-bandwidth access to the data, important data abstractions are extracted, and the geometry and
data on these abstractions is transferred across the slow network to a local client. In this context, “abstractions” may
include model geometry, slices, isosurfaces, streamlines, vortex cores, and any other one- or two-dimensional data
extraction the user may desire. A modification of the client-server architecture is to render the plot remotely and
transfer the image at video-like frame-rates. These client-server architectures are important for overcoming network
bandwidth limitations but do nothing to overcome the new bottleneck, sustained disk-read data transfer rates
(SDRDTR).

The current hardware-based solution to the SDRDTR bottleneck is to increase the number of spindles (hard-disks)
used in the parallel file system. If the number of spindles in the file system doubles every 3 years or so, the time to
read a data file will remain constant. However, increasing the number of disks in the parallel file system is counter-
intuitive, as the hard disk capacity will match the file size increases without adding disks. As such, that solution will
likely meet with some resistance. Longer-term hardware-based solutions, such as solid-state disks (SSDs) are not yet
economically viable for collections of large CFD datasets.

The software-based solution to the SDRDTR bottleneck to read and write less data. Generally, only a small percentage
of the total dataset is needed to create the abstractions the user wishes to view, so this solution seems viable. To be
sustainable, the percentage of the dataset written by the CFD code and loaded into the visual analysis application must
decrease over time (halved every three to four years). This solution also has other benefits, like reduced memory
requirements and reduced network bandwidth requirements. This is one architectural approach taken by Tecplot, Inc.
for large-data visualization.

Tecplot, Inc. www.tecplot.com info@tecplot.com

4

In a previous papers11, a new architecture was described for visualizing large CFD datasets. It was based on loading
subzones (spatially correlated sub-segments of the full dataset of less than 256 nodes or cells) on demand (only as
needed). To support this algorithm, interval trees can be created to rapidly select the needed subzones. The architecture
is sustainable: for slices and isosurfaces, the number of subzones loaded is approximately () and for streamtraces
it is approximately (). In a more recent paper20, the same benefits have been demonstrated for a subzone-based
in-situ technique where only those subzones needed to create desired abstractions are written to file from the CFD
code. Once subzone in-situ and subzone load-on-demand are adopted, the network bandwidth and latency often
become the dominant bottleneck, particularly during the visual analysis of remote data. In this paper, a subzone-based
client-server architecture is presented to overcome network bandwidth and latency limitations.

The new subzone-based client-server architecture transfers, from the server to the client, only those subzones needed
to create the desired abstractions. The architecture is sustainable: for slices and isosurfaces, the number of subzones
transferred is approximately () and for streamtraces it is approximately (), where is the number of cells or
nodes in the volume grid. This means that the bandwidth requirements are dramatically reduced for large data files,
and that the benefits of the architecture increase as the dataset size increases. Once the needed subzone data is
transferred the latency experienced by the user is also dramatically reduced since all of the needed data is local on the
client computer. With traditional client-server architectures, even a slight change in slice position or isosurface value
triggers a re-extraction and resend of the entire surface. Also, because subzones are volume data, computations such
as spatial derivatives that require volume data can be performed without transferring more subzone data. On the other
hand, the subzone-based client-server does generally transfer more data than a well-designed traditional client-server
architecture, which should transfer the minimal required to represent the desired abstractions. We will analyze this
tradeoff more fully in the results section of this paper.

II. Approach

A. Related Work

Client-server architectures are a common approach for visualization of large remote datasets with low network
bandwidth or high network latency. Traditional client-server approaches typically overcome the network limitations
in one of two ways: by transferring images or by transferring data abstractions such as slices, isosurfaces, and
streamtraces. Both of these approaches dramatically reduce the amount of data transferred for a single visualization.
However, there are significant downsides to the traditional client-server approaches. First, multiple visualizations
require that each image or abstraction be sent over the network in their entirety, not allowing any reuse of previously
transmitted data. Second, the typical server architecture loads the entire volume data and generates all or most of the
visualization on the server thus consuming large amounts of potentially valuable server memory and CPU time.

B. Subzone-Based Client-Server

The subzone-based client-server approach uses a server process on a remote machine to load subzones from a data
file local to the server machine and transfer those subzones over the network to client software running on the user’s
local machine. The server benefits from the same advantages that the client does in the data-local case—it requires
only enough memory to load the necessary subzones, and reads only those subzones from disk. This contrasts with
other client-server architectures where the server must load the grid plus some number of solution variables in their
entirety in order to extract the desired surfaces. The server transfers the subzones required to encompass the desired
surface to the client, which then extracts and renders the surface.

Tecplot, Inc. www.tecplot.com info@tecplot.com

5

Another advantage of subzone-based client-server is that it allows small adjustments to the surface location with no,
or limited additional data from the server. As the surface is moved, only those additional subzones required to
encompass the surface’s new location are transferred from the server.

Consistent with data-local subzone loading, total size of data required to display a particular surface generally scales
as approximately (), where n is the number of nodes or cells in the grid. The benefit of reduced data transfer thus
increases proportionally as problems grow larger.

For streamtrace generation, the required data generally scales with roughly (). There is a performance penalty for
streamtraces, however, because the client cannot know a priori which subzones will be required to enclose the
complete path of the streamtrace given only its starting location. The client must request subzones to encompass the
starting location and integrate the velocity field from there until it encounters subzones not yet loaded, then request
those additional subzones, repeating the process until the integration is complete (by whatever criteria the user has
specified). Each of these requests incurs a latency penalty.

A server process is launched by Tecplot via an SSH connection, with the user providing authentication to the SSH
server on the server machine. The server connects back to Tecplot via SSH’s port forwarding mechanism. This
procedure ensures that the user is allowed access only to those data files granted to the login account on the server
machine, and that all data passed between client and server are encrypted.

The same code module (“add-on,” a shared library/dynamic-link library) that Tecplot uses to load local data is used
to read data files on the server. This add-on is dynamically loaded by the server process, which handles the
communication between the add-on and a client add-on loaded by Tecplot itself. When Tecplot requests data to create
a plot, the client add-on passes this request over the SSH connection to the server process, which calls into the loader
add-on to load the data. The server transmits the data back to the client add-on, which returns it to Tecplot.

Latency issues were encountered in certain cases, such as data sets with many zones or many meta-data items
(“auxiliary data”). Such data resulted in many round trips between client and server, causing a significant delay in
loading. This problem was addressed by batching these requests.

III. Results
The subzone-based client-server was tested on three CFD datasets: a large-eddy simulation of the wake of a wind
turbine, the NASA trapezoidal wing dataset in the High Lift Prediction workshop,11,12 and an unsteady simulation of
a jet impinging on a flat plate.

Timing tests were run on a Windows 7 64-bit workstation having 32GB of memory and dual Intel Xeon E5-2630 6-
core processors. All tests were run with each of four data locations: (1) local hard disk; (2) network disk; (3) server
on local network, an 8-core virtual machine; and (4) remote server, a 4-core machine running in Amazon’s EC2 cloud.
The first two of these loaded the data directly (not using client-server) while the last two tested client-server. Each test
was timed. The client-server times included the time to connect to the server machine and launch and establish a
connection with the server, which added a few seconds to these cases. The total amount of data transferred in the
client-server test cases was also measured and compared with the minimum amount of data required to display plot
(if the surface in question were extracted to a file, for example; this includes connectivity). Finally, the memory
occupied by the server—resident set size—was noted.

A. LES of Wind Turbine Wake

The first test case is a large eddy simulation of the flow in the wake of NREL’s 10-meter research wind turbine. The
grid is composed of 280 million nodes in 5800 blocks. The total file size, including 13 single-precision variables, is

Tecplot, Inc. www.tecplot.com info@tecplot.com

6

15 gigabytes. Tests were performed for two different plots of this data—a slice through the data and an isosurface of
vorticity magnitude.

The slice consisted of about 360,000 nodes and 352,000 quadrilateral elements, representing 11MB of data. The client-
server cases transferred 49MB, including all meta-data. The server consumed 425MB of RAM.

The isosurface consisted of about 3.4 million nodes and 6.6 million triangular elements, representing 131MB of data.
The client-server cases transferred 335MB of data, and the server occupied 1.4GB of RAM.

The average times in seconds for each case are displayed below; individual test times varied by no more than 2
seconds.

Test Local Disk Network Disk Network Server Remote Server
Slice 5 13 36 38
Isosurface 18 93 91 156

It is interesting to note that a server running on a local network machine resulted in a faster time for the isosurface test
case than the network disk. The remote server took roughly 7 times as long to perform each plot compared with loading
the data from local hard disk.

-
Figure 3. NREL 10m Research Wind Turbine

Tecplot, Inc. www.tecplot.com info@tecplot.com

7

Figure 4. Slice Through Wind Turbine Wake

Figure 5. Isosurface of Vorticity Magnitude in Wind Turbine Wake

Tecplot, Inc. www.tecplot.com info@tecplot.com

8

B. High Lift Prediction Workshop Unstructured Grid

The second example is the NASA trapezoidal wing from the first High Lift Prediction Workshop. This steady-state
unstructured-grid dataset has 76 million nodes and 204 million hexahedral elements. The uncompressed file size with
12 single-precision variables is 9.9GB. This becomes 6.2GB when written to the SZL format due to connectivity
compression.

Two cases were tested: A single slice near the tip, and 10 slices close together near the tip (representing fine
adjustments of the slice location). All slices were colored by local pressure coefficient. Each slice consisted of about
120,000 nodes and 165,000 triangular elements. Including the grid variables, one solution variable and the
connectivity, 4.4MB of data would be required to produce a single slice, or 44MB for all 10 slices.

The average test times in seconds were as follows:

Test Local Disk Network Disk Network Server Remote Server
1 slice 2 10 12 13
10 slices 7 25 26 34

The remote server case took 5-6 times as long to produce the slice as the local hard disk case. The server consumed
232MB of RAM for the single slice, and 516MB of RAM for 10 slices. It transferred 78MB of data for a single slice,
and 240MB of data to produce 10 slices. The data transferred in the 10-slice case was only about 3 times that of the
single-slice case, indicating that the client was able to reuse subzones transferred for the first slice in the extraction of
subsequent slices.

Figure 6. NASA Trapezoidal wing with Cp=-2 isosurface and a slice near the wing tip

Tecplot, Inc. www.tecplot.com info@tecplot.com

9

C. Jet Impinging on Flat Plate

The final example is a jet impinging on a flat plate. The dataset is grid-steady solution-unsteady, multi-block
structured. It has 81 time steps, each of which has 9 million nodes, for a total of 733 million nodes. With 8 single-
precision variables, the file size is 15GB.

For the test, a slice is placed through the middle of the jet and colored with local density. The plot is then animated
through all 81 time steps. A single slice consists of about 150,000 nodes and 144,000 quadrilateral elements, requiring
4.7MB of data, including connectivity. The server transferred 21MB for the initial plot. Each additional time step
transferred an additional 4MB of data. The total animation transferred 338MB of data. At the end of the animation,
the server occupied 2.1GB of RAM, and Tecplot 360 occupied 909 MB. Run times in seconds are shown in the
following table.

Location Time to First Image Animation Time Total Time
Local Disk 2 51 53
Network Disk 7 150 157
Network Server 22 143 165
Remote Server 30 163 193

The remote server total time was less than 4 times that of the local disk case, an improvement probably resulting from
the client’s ability to re-use the grid for each time step.

Figure 7. Slice of a jet impinging on a flat plate

Tecplot, Inc. www.tecplot.com info@tecplot.com

10

IV. Conclusion
The subzone-based client-server architecture has demonstrated significant reduction in network data transfers
compared to direct loading of full volume PLT and SZL datasets. The initial data transfer is larger by factors of
between 3 and 17 than the data that would be transferred by traditional surface-based client-server architectures, but
it substantially reduces subsequent data transfers during many post-processing tasks, including time animation,
exploration of slices and isosurfaces near those previously viewed and the potential computation of spatial derivatives
on the client computer. It also substantially reduces the server-side resource requirements. Subzone-based client-server
provides a compromise between the flexibility with large overhead of full volume datasets transfers and the
inflexibility with small data transfers of traditional in surface-based client-server techniques.

Acknowledgments
The authors would like to thank Chris Nelson for providing the wind turbine LES and impinging jet datasets.

References
1“Hitachi Global Storage Technologies,” http://www.hitachigst.com/hdd/technolo/overview/storagetechchart.html.
2Moran, P.J., “Field Model: An Object-Oriented Data Model for Fields,” NASA TR NAS-01-005, 2005.
3Chiang, Y.-J., ElSana, J., Lindstrom, P., Pajarolo, R., and Silva, C.T., “Out-of-Core Algorithms for Scientific Visualization

and Computer Graphics,” Tutorial Course Notes, IEEE Visualization 2003.
4Chiang, Y.-J., and Silva, C.T., “External Memory techniques for Isosurface Extraction in Scientific Visualization,” External

Memory Algorithms and Visualization, DIMACS Series, 50:247-277, 1999.
5Chiang, Y.-J., and Silva, C.T., “Interactive Out-Of-Core Isosurface Extraction,” IEEE Visualization 98, 167-174, Oct. 1998.
6Ueng, S.-K., Sikorski, C., and Ma, K.-L., “Out-of-Core Streamline Visualization on Large Unstructured Meshes,” IEEE

Transactions on Visualization and Computer Graphics, 3(4):370-380, Oct. 1997.
7Fox, G. C. ``A review of automatic load balancing and decomposition methods for the hypercube,'' in M. Schultz, editor,

Numerical Algorithms for Modern Parallel Computer Architectures, pages 63-76. Springer-Verlag, New York, 1988. Caltech
Report C3P-385b.

8de Ronde, J.F., Schoneveld, A. and Sloot, P.M.A., “Load Balancing by Redundant Decomposition and Mapping,”, Future
Generation Computer Systems, 12(5):391-406, 1997.

9Weinkauf, T. and Theisel, H., “Streak Lines as Tangent Curves of a Derived Vector Field,”, IEEE Transactions on
Visualization and Computer Graphics, Vol. 16, Issue 2, Oct 2010.

10Moran, P.J., Henze, C., “Large Field Visualization With Demand-Driven Calculation,” ieee_vis, pp.2, 10th IEEE Visualization
1999 (VIS ’99), 1999.

11Imlay, S.T., and Mackey, C.A., “Improved Performance of Large Data Visualization using Sub-Zone Load-On-Demand,”
AIAA 2011-1161, Jan. 2013.

12Slotnick, J.P., Hannon, J.A., and Chaffin, M., “Overview of the First AIAA High Lift Prediction Workshop,” AIAA 2011-
0862, Jan. 2011.

13Rumsey, C.L., Long, M., and Stuever, R.A., and Wayman, T.R.., “Summary of the First AIAA CFD High Lift Prediction
Workshop,” AIAA 2011-0939, Jan. 2011.

14Isenburg, M. “Compressing Polygon Mesh Connectivity with Degree Duality Prediction,” Graphics Interface, 2002.
15Kronrod, B. and Gotsman, C., “Efficient Coding of Nontriangular Mesh Connecitvity,” Graphical Method, 63, pp 263-275,

2001.
16Pajarola, R. Rossignac, J. Szymczak, A., “Implant Sprays: Compression of Progressive Tetrahedral Mesh Connectivity,”

Proceedings of IEEE Visualization 99, 1999.
17Gumhold, S, Guthe, S, and Strasser, W., “Tetrahedral Mesh Compression with the Cut-Border Machine,” Proceedings of

IEEE Visualization 99, 1999.
18Slotnick, J., Khodadoust, A., Alonso, J., Darmofal, D., Gropp, W., Lurie, E. and Mavriplis, D., “CFD Vision 2030 Study: A

Path to Revolutionary Computational Data Science,” NASA/CR-2014-218178, 2014.
19Mooreland, K., “The Tensions of In Situ Visualization,” IEEE Computer Graphics and Applications, 2016, Vol. 36, Issue 2,

Mar.-Apr. 2016.
20Imlay, S.T., and Mackey, C.A., “Subzone-Based In Situ Technique for I/O Efficient Analysis and Exploratory Visualization,”

AIAA 2017-3806, Jun. 2017.

