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Scott T. Imlay1, Davide E. Taflin2, and Craig Mackey3 
Tecplot Inc., Bellevue, WA, 98006 

Higher-Order finite-element CFD methods have the potential to reduce the computational 
cost to achieve a desired solution error. These techniques have been an area of research for 
many years and are becoming more widely available in popular CFD codes. CFD visualization 
software is lagging behind the development of higher-order CFD analysis codes. This paper 
discusses a technique for visualizing isosurfaces in higher-order element solutions with 
reduced memory usage. The technique recursively subdivides higher-order elements into 
smaller linear sub-elements where the isosurface can be extracted using standard marching-
tets or marching-cubes techniques. Memory usage is minimized by discarding unneeded sub-
elements. In a previous paper this technique was demonstrated with higher-order hexahedra 
and tetrahedra with Lagrangian polynomial basis functions. In this paper, the technique is 
extended to higher-order pyramids and prisms. The results are compared to other techniques 
for visualization of higher-order element isosurfaces. 

 
 

I. Introduction 
 
The use of higher-order (greater than second order) computational fluid dynamics (CFD) methods is increasing. 
Popular government and academic CFD codes such as FUN3D, KESTREL, and SU2 have released, or are planning 
to release, versions that include higher-order methods. This is because higher-order accurate methods offer the 
potential for better accuracy and stability1, especially for unsteady flows. This trend is likely to continue. 
 
Commercial visual analysis codes are not yet providing full support for higher-order solutions. The CFD 2030 vision 
states “…higher-order methods will likely increase in utilization during this time frame, although currently the ability 
to visualize results from higher order simulations is highly inadequate. Thus, software and hardware methods to handle 
data input/output (I/O), memory, and storage for these simulations (including higher-order methods) on emerging 
HPC systems must improve. Likewise, effective CFD visualization software algorithms and innovative information 
presentation (e.g., virtual reality) are also lacking.” The isosurface algorithm described in this paper is the first step 
toward improving higher-order element visualization in the commercial visualization code Tecplot 360. 
 
Higher-order methods can be based on either finite-difference methods or finite-element methods. While some popular 
codes use higher-order finite-difference methods (OVERFLOW, for example), this paper will focus on higher-order 
finite-element techniques. Specifically, we will present a memory-efficient recursive subdivision algorithm for 
visualizing the isosurface of higher-order element solutions. In a previous paper5 we demonstrated this technique for 
higher-order tetrahedral and hexahedral elements with Lagrangian polynomial basis functions. In this paper we extend 
the algorithm to work with pyramid and prism elements with Lagrangian basis functions. The pyramid basis functions 
are more complicated because they are rational functions instead of simple orthogonal polynomials.  
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II. Approach 
 

A. Related Work 
 
Nearly all isosurfacing techniques for higher-order finite-elements involve subdivision of the higher-order element 
into a number of sub-elements which are then processed with standard linear methods. There are a couple of variations 
on subdivision technique. The simplest is to subdivide a specified number of times, adding nodes via interpolation 
using the element’s basis functions, until the isosurface through the set of linear sub-elements sufficiently 
approximates the isosurface through the higher-order element. One example of this approach is the work of Remacle 
et. al.3 where the local refinement is terminated when the “visualization error” is below a desired threshold. A second 
approach is by Thompson and Pebay2 who first add nodes at minima and maxima within the element and on the 
element faces, and then tesselates the resulting existing and new nodes to get a linear subdivision. This technique is 
guaranteed to give a topologically correct isosurface, but the error of the isosurface may still be high and the cost of 
finding minima and maxima is non-trivial.  
 
We use recursive subdivision technique similar to Remacle et. al.3 However, we further minimize the memory usage 
by discarding all sub-elements that don’t contain the isosurface. This paper is an extension of the algorithm described 
by Imlay et. al.5 to higher-order prism and pyramid elements. 
 

B. Higher-Order Hexahedra and Tetrahedra Basis Functions 
 

The Lagrangian basis functions for the hexahedral and tetrahedral element types were covered in a previous paper5. 
This paper describes the Lagrangian basis functions for the prism and pyramid element types. 
 
Prism Basis Functions 
 
The quadratic prism has 18 nodes as shown in figure 1: six nodes at the corners, nine nodes at the edges, and three 
nodes at the center of the quadrilateral faces. Figure 1 also shows the local coordinate system used to define the basis 
functions. 
 

 
Figure 1. Quadratic Prism 
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On this element, the solution is approximated by the product of a quadratic triangle basis function in the (𝜉, 𝜂) plane 
and a quadratic line basis function in the 𝜍 direction. 
 

𝑁
ଶ(𝜉, 𝜂, 𝜍) = 𝑁௧

ଶ(𝜉, 𝜂)𝑁
ଶ(𝜍)  

 
Look first at the triangle basis function. We assume a right triangle which can then be mapped into a general curved 
triangle. The local coordinates for the right triangle are shown in figure 2. 
 

 
Figure 2. Triangle Face Basis Functions 

 
The quadratic (p=2) basis functions, 𝑁௧

ଶ(𝜉, 𝜂), are defined in terms of the linear (p=1) basis functions, 𝑁௧
ଵ(𝜉, 𝜂), which 

will be described first. The linear basis functions for each node vary linearly from one at that node to zero at the other 
two nodes. So, for node 1, 𝑁௧ଵ

ଵ  is one at node 1 and zero at nodes 2 and 3. Mathematically: 
 

𝑁௧ଵ
ଵ = 1 − 𝜉 − 𝜂 

𝑁௧ଶ
ଵ = 𝜉 

𝑁௧ଷ
ଵ = 𝜂 

 
The same rules apply for the quadratic basis function: the basis function for a node is one at the node and zero at all 
other nodes. This is satisfied by the equations: 
 

𝑁௧ଵ
ଶ = 2𝑁௧ଵ

ଵ (𝑁௧ଵ
ଵ − 0.5) 

𝑁௧ଶ
ଶ = 2𝑁௧ଶ

ଵ (𝑁௧ଶ
ଵ − 0.5) 

𝑁௧ଷ
ଶ = 2𝑁௧ଷ

ଵ (𝑁௧ଷ
ଵ − 0.5) 

𝑁௧ସ
ଶ = 4𝑁௧ଵ

ଵ 𝑁௧ଶ
ଵ  

𝑁௧ହ
ଶ = 4𝑁௧ଶ

ଵ 𝑁௧ଷ
ଵ  

𝑁௧
ଶ = 4𝑁௧ଵ

ଵ 𝑁௧ଷ
ଵ  
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The quadratic basis functions for the line in the 𝜍 direction (figure 1) are as follows for nodes on the bottom (𝜍 = 0), 
middle (𝜍 = 1

2ൗ ), and top (𝜍 = 1) of the prism. 
 

𝑁
ଶ = 2(1 − 𝜍)(0.5 − 𝜍) 

𝑁
ଶ = 4𝜍(1 − 𝜍) 

𝑁௧
ଶ = 2𝜍(0.5 − 𝜍) 

 
 
The prism basis function for a node is the product of the triangle basis function for the node within the triangle with 
the appropriate line basis function (bottom, middle, or top).  
 
 
Pyramid Basis Functions 
 
The basis functions for the pyramid are more complicated than for the other element types. This is because the variation 
of the solution along the triangular faces must match the distribution along the faces of adjacent tetrahedra and, at the 
same time, the variation of the solution along the quadrilateral face must match the distribution along the face of an 
adjacent hexahedron. This can’t be done with simple orthogonal polynomial basis functions, so we use rational 
polynomials for the pyramid basis functions. We use the basis functions of Chan and Warburton4. 
 

 
Figure 3. Pyramid Local Coordinates. 

 
 
The local coordinates for the pyramid are shown in figure 3. Given this, the basis functions are  
 

 
 
The above are modal basis functions, meaning that the coefficients of the polynomial basis functions are not the 
solution at the nodes. We wish to have a nodal basis function. 
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C. Subdivision into Linear Sub-Elements 
 

The subdivision for each higher-order pyramid or prism element is as follows: 
 

1. Break it into the logical set of linear sub-tetrahedra. 
2. If the error too large, create new edge, face, and face nodes and subdivide the tetrahedron into 8 sub-tetrahedra 

as shown in figure 4. Interpolate the solution to these new nodes using the original prism or pyramid basis 
functions. 

3. Repeat until the error is less than a predefined threshold. 
 
 

 
Figure 4. Subdivision of Quadratic Tetrahedron 

While the process is the same for pyramids and prisms, the initial subdivision is different. 
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Prism Subdivision: 
 

 
Figure 5. Subdivision of Quadratic Prism into Linear Tetrahedra 

The quadratic prism has nodes at the corners, edge mid-point, and the center of the quadrilateral faces. It can be 
subdivided naturally into eight linear prisms as shown in figure 5, and each sub-prism can be subdivided into three 
linear tetrahedra, yielding 24 linear sub-tetrahedra for each quadratic prism.  
 
 
Pyramid Subdivision: 
 

 
Figure 6. Subdivision of Quadratic Pyramid into Linear Tetrahedra 

 
As shown in figure 6, the quadratic pyramid naturally subdivides into eight linear pyramids and four linear tetrahedra. 
Each linear pyramid can be further subdivided into two linear tetrahedra, yielding a total of twenty sub-tetrahedra for 
the quadratic pyramid. 
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III. Results 
 
The new isosurface algorithm has been applied to arrays of 18-node quadratic prisms and 14-node quadratic pyramids 
to produce isosurfaces of simple polynomial functions.  
 
The example is a spherical isosurface using both quadratic prisms and pyramids. The quadratic prism result is shown 
in figure 7. This is with just 54 quadratic prism elements and four levels of subdivision. Note that the selective 
subdivision only needed 2,353 linear tetrahedra whereas the full subdivision would have created 663,552 tetrahedra – 
a factor of 280 reduction in memory. 
 

 
Figure 7. Isosurface for Quadratic Prisms with 4 Levels of Selective Subdivision 

The higher-order prism isosurface algorithm also works for curved elements as shown in figure 8. 

 
Figure 8. Isosurface from Curved Quadratic Prisms 
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For the same spherical isosurface, the quadratic pyramid isosurface is shown in figure 9. This is with just 54 quadratic 
prism elements and four levels of subdivision. Note that the selective subdivision only needed 3,804 linear tetrahedra 
whereas the full subdivision would have created 1,658,880 tetrahedra – a factor of 436 reduction in memory. 
 

 
Figure 9. Isosurface for Quadratic Pyramids with 4 Levels of Selective Subdivision 

 

IV. Conclusions 
A recently developed recursive subdivision algorithm5 to compute isosurfaces for higher-order element solutions 

has been extended to work with higher-order pyramid and prism element types. The algorithm minimizes memory 
usage by keeping only sub-elements that contain the isosurface. The benefits of the algorithm have been demonstrated 
for Lagrangian quadratic elements and simple functions resulting in spherical isosurfaces.   
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