
Optimized
Implementation of Recursive
Sub-Division Technique for
Higher-Order Finite-Element

Isosurface and Streamline
Visualization

2023

VISUALIZING HIGHER-ORDER ELEMENTS
Scott T. Imlay Yves-Marie Lefevbre, Scott Fowler,

Michael Saunders, and John Goetz
Tecplot Inc., Bellevue, WA, 98006

Tecplot, Inc. info@tecplot.com www.tecplot.com

1

Optimized Implementation of Recursive Sub-Division
Technique for Higher-Order Finite-Element

Isosurface and Streamline Visualization

Scott T. Imlay1, Yves-Marie Lefebvre2, Scott Fowler3, Michael Saunders4, and John Goetz5
Tecplot Inc., Bellevue, WA, 98006

Higher-Order finite-element CFD methods have the potential to reduce the computational
cost to achieve a desired solution error. These techniques have been an area of research for
many years and are becoming more widely available in popular CFD codes. CFD visualization
software is lagging behind the development of higher-order CFD analysis codes. This paper
discusses a technique for visualizing isosurfaces and streamlines in higher-order element
solutions with reduced memory usage. The technique recursively subdivides higher-order
elements into smaller linear sub-elements where the isosurface can be extracted using
standard marching-tets techniques. Memory usage is minimized by discarding unneeded sub-
elements. In a previous paper this technique was demonstrated with higher-order quadratic
hexahedra, tetrahedra, prism, and pyramid elements with Lagrangian polynomial basis
functions. In this paper, the technique is extended to cubic elements and streamlines, and
performance optimization are discussed. The results are compared to other techniques for
visualization of higher-order element isosurfaces.

1 Advisory Software Development Engineer, P.O. Box 52708, Bellevue, WA, Senior Member AIAA.
2 Chief Technology Officer, P.O. Box 52708, Bellevue, WA.
3 Tecplot Product Manager, P.O. Box 52708, Bellevue, WA.
4 Advisory Software Development Engineer, P.O. Box 52708, Bellevue, WA.
5 Senior Software Development Engineer, P.O. Box 52708, Bellevue, WA.

mailto:info@tecplot.com
http://www.tecplot.com/

Tecplot, Inc. info@tecplot.com www.tecplot.com

2

I. Introduction

The use of higher-order (greater than second order) computational fluid dynamics (CFD) methods is increasing.
Popular government and academic CFD codes such as FUN3D, KESTREL, and SU2 have released, or are planning
to release, versions that include higher-order methods. This is because higher-order accurate methods offer the
potential for better accuracy and stability1, especially for unsteady flows. This trend is likely to continue.

Commercial visual analysis codes are not yet providing full support for higher-order solutions. The CFD 2030 vision
states “…higher-order methods will likely increase in utilization during this time frame, although currently the ability
to visualize results from higher order simulations is highly inadequate. Thus, software and hardware methods to handle
data input/output (I/O), memory, and storage for these simulations (including higher-order methods) on emerging
HPC systems must improve. Likewise, effective CFD visualization software algorithms and innovative information
presentation (e.g., virtual reality) are also lacking.” The isosurface algorithm described in this paper is the first step
toward improving higher-order element visualization in the commercial visualization code Tecplot 360.

Higher-order methods can be based on either finite-difference methods or finite-element methods. While some popular
codes use higher-order finite-difference methods (OVERFLOW, for example), this paper will focus on higher-order
finite-element techniques. Specifically, we will present a memory-efficient recursive subdivision algorithm for
visualizing the isosurface of higher-order element solutions. In previous papers5,6 we demonstrated this technique for
quadratic tetrahedral, hexahedral, pyramid, and prism elements with Lagrangian polynomial basis functions. In this
paper we discuss the integration of these techniques into the engine of the commercial visualization code Tecplot 360
and discuss speed optimizations. We also discuss the extension of the recursive subdivision algorithm to cubic
tetrahedral and pyramid elements, and quartic tetrahedral elements. Finally, we discuss the extension of the recursive
subdivision algorithm to the computation of streamlines.

II. Approach

A. Related Work

Nearly all isosurfacing techniques for higher-order finite-elements involve subdivision of the higher-order element
into a number of sub-elements which are then processed with standard linear methods. There are a couple of variations
on subdivision technique. The simplest is to subdivide a specified number of times, adding nodes via interpolation
using the element’s basis functions, until the isosurface through the set of linear sub-elements sufficiently
approximates the isosurface through the higher-order element. One example of this approach is the work of Remacle
et. al.3 where the local refinement is terminated when the “visualization error” is below a desired threshold. A second
approach is by Thompson and Pebay2 who first add nodes at minima and maxima within the element and on the
element faces, and then tesselates the resulting existing and new nodes to get a linear subdivision. This technique is
guaranteed to give a topologically correct isosurface, but the error of the isosurface may still be high and the cost of
finding minima and maxima is non-trivial.

We use recursive subdivision technique similar to Remacle et. al.3 However, we further minimize the computational
time by discarding all sub-elements that don’t contain the isosurface. This paper describes the optimized
implementation of the algorithm described by Imlay et. al.5,6 in the engine of Tecplot 360, the extension of the
algorithm to cubic and quartic elements, and the extension of the algorithm to the computation of streamlines.

mailto:info@tecplot.com
http://www.tecplot.com/

Tecplot, Inc. info@tecplot.com www.tecplot.com

3

B. Higher-Order Tetrahedra and Pyramid Basis Functions

The Lagrangian basis functions for quadratic hexahedral, tetrahedral, prism, and pyramid element types were covered
in a previous papers5,6. This paper describes the cubic Lagrangian basis functions for the tetrahedra and pyramid
element types.

Cubic Tetrahedral Basis Functions

The cubic trahedra has 20 nodes as shown in figure 1: fours nodes at the corners and two non-corner nodes on each of
the six edges. Figure 1 also shows the local coordinate system used to define the basis functions.

Figure 1. Cubic tetrahedra nodes and natural coordinates.

The tetrahedra basis functions are polynomials in the natural coordinates (𝜉𝜉, 𝜂𝜂, 𝜍𝜍) as shown in Figure 1. The cubic
(p=3) basis functions 𝑁𝑁𝑡𝑡3(𝜉𝜉, 𝜂𝜂, 𝜍𝜍), are defined in terms of the linear (p=1) basis functions, 𝑁𝑁𝑡𝑡1(𝜉𝜉, 𝜂𝜂, 𝜍𝜍), which will be
described first. The linear basis functions for each node vary linearly from one at that node to zero at the other two
nodes. So, for node 1, 𝑁𝑁𝑡𝑡11 is one at node 1 and zero at nodes 2, 3, 4. Mathematically:

mailto:info@tecplot.com
http://www.tecplot.com/

Tecplot, Inc. info@tecplot.com www.tecplot.com

4

𝑁𝑁𝑡𝑡11 = 1 − 𝜉𝜉 − 𝜂𝜂 − 𝜍𝜍

𝑁𝑁𝑡𝑡21 = 𝜉𝜉
𝑁𝑁𝑡𝑡31 = 𝜂𝜂
𝑁𝑁𝑡𝑡41 = 𝜍𝜍

The same rules apply for the cubic basis function: the basis function for a node is one at the node and zero at all other
nodes. This is satisfied by the equations:

𝑁𝑁𝑡𝑡13 = 9
2� 𝑁𝑁𝑡𝑡11 (𝑁𝑁𝑡𝑡11 − 1

3�)(𝑁𝑁𝑡𝑡11 − 2
3�)

𝑁𝑁𝑡𝑡23 = 9
2� 𝑁𝑁𝑡𝑡21 (𝑁𝑁𝑡𝑡21 − 1

3�)(𝑁𝑁𝑡𝑡21 − 2
3�)

𝑁𝑁𝑡𝑡33 = 9
2� 𝑁𝑁𝑡𝑡31 (𝑁𝑁𝑡𝑡31 − 1

3�)(𝑁𝑁𝑡𝑡31 − 2
3�)

𝑁𝑁𝑡𝑡43 = 9
2� 𝑁𝑁𝑡𝑡41 (𝑁𝑁𝑡𝑡41 − 1

3�)(𝑁𝑁𝑡𝑡41 − 2
3�)

𝑁𝑁𝑡𝑡53 = 27
2� 𝑁𝑁𝑡𝑡11 𝑁𝑁𝑡𝑡21 (𝑁𝑁𝑡𝑡11 − 1

3�)
𝑁𝑁𝑡𝑡63 = 27

2� 𝑁𝑁𝑡𝑡11 𝑁𝑁𝑡𝑡21 (𝑁𝑁𝑡𝑡21 − 1
3�)

𝑁𝑁𝑡𝑡73 = 27
2� 𝑁𝑁𝑡𝑡21 𝑁𝑁𝑡𝑡31 (𝑁𝑁𝑡𝑡21 − 1

3�)
𝑁𝑁𝑡𝑡83 = 27

2� 𝑁𝑁𝑡𝑡21 𝑁𝑁𝑡𝑡31 (𝑁𝑁𝑡𝑡31 − 1
3�)

𝑁𝑁𝑡𝑡93 = 27
2� 𝑁𝑁𝑡𝑡31 𝑁𝑁𝑡𝑡11 (𝑁𝑁𝑡𝑡31 − 1

3�)
𝑁𝑁𝑡𝑡103 = 27

2� 𝑁𝑁𝑡𝑡31 𝑁𝑁𝑡𝑡11 (𝑁𝑁𝑡𝑡11 − 1
3�)

𝑁𝑁𝑡𝑡113 = 27
2� 𝑁𝑁𝑡𝑡41 𝑁𝑁𝑡𝑡11 (𝑁𝑁𝑡𝑡11 − 1

3�)
𝑁𝑁𝑡𝑡123 = 27

2� 𝑁𝑁𝑡𝑡41 𝑁𝑁𝑡𝑡11 (𝑁𝑁𝑡𝑡41 − 1
3�)

𝑁𝑁𝑡𝑡133 = 27
2� 𝑁𝑁𝑡𝑡41 𝑁𝑁𝑡𝑡21 (𝑁𝑁𝑡𝑡21 − 1

3�)
𝑁𝑁𝑡𝑡143 = 27

2� 𝑁𝑁𝑡𝑡41 𝑁𝑁𝑡𝑡21 (𝑁𝑁𝑡𝑡41 − 1
3�)

𝑁𝑁𝑡𝑡153 = 27
2� 𝑁𝑁𝑡𝑡41 𝑁𝑁𝑡𝑡31 (𝑁𝑁𝑡𝑡31 − 1

3�)
𝑁𝑁𝑡𝑡163 = 27

2� 𝑁𝑁𝑡𝑡41 𝑁𝑁𝑡𝑡31 (𝑁𝑁𝑡𝑡41 − 1
3�)

𝑁𝑁𝑡𝑡173 = 27𝑁𝑁𝑡𝑡11 𝑁𝑁𝑡𝑡21 𝑁𝑁𝑡𝑡31
𝑁𝑁𝑡𝑡183 = 27𝑁𝑁𝑡𝑡11 𝑁𝑁𝑡𝑡21 𝑁𝑁𝑡𝑡41
𝑁𝑁𝑡𝑡193 = 27𝑁𝑁𝑡𝑡21 𝑁𝑁𝑡𝑡31 𝑁𝑁𝑡𝑡41
𝑁𝑁𝑡𝑡203 = 27𝑁𝑁𝑡𝑡11 𝑁𝑁𝑡𝑡31 𝑁𝑁𝑡𝑡41

Cubic Pyramid Basis Functions

The basis functions for the pyramid are more complicated than for the other element types. This is because the variation
of the solution along the triangular faces must match the distribution along the faces of adjacent tetrahedra and, at the
same time, the variation of the solution along the quadrilateral face must match the distribution along the face of an
adjacent hexahedron. This can’t be done with simple orthogonal polynomial basis functions, so we use rational
polynomials for the pyramid basis functions. We use the basis functions of Chan and Warburton4.

mailto:info@tecplot.com
http://www.tecplot.com/

Tecplot, Inc. info@tecplot.com www.tecplot.com

5

Figure 2. Pyramid Local Coordinates.

The local coordinates for the pyramid are shown in figure 2. Given this, the cubic (N=3) basis functions are

For cubic (N=3) this results in thirty functions. The above are modal basis functions, meaning that the coefficients of
the polynomial basis functions are not the solution at the nodes. We wish to have a nodal basis function.

mailto:info@tecplot.com
http://www.tecplot.com/

Tecplot, Inc. info@tecplot.com www.tecplot.com

6

C. Subdivision into Linear Sub-Elements

The subdivision for each higher-order pyramid or prism element is as follows:

- Break it into the logical set of linear sub-tetrahedra.
- If the error too large, create new edge nodes on each of the sub-tetrahedra and subdivide into 8 sub-sub-

tetrahedra as shown in figure 3. Interpolate the solution to these new nodes using the original hexahedron,
tetrahedron, prism or pyramid basis functions.
- Repeat until the desired accuracy is obtained.

Figure 3. Subdivision of Quadratic Tetrahedron

While the process is the same for all element shapes, the initial subdivision is different.

Cubic Tetrahedron Subdivision:

The subdivision of the quadratic tetrahedron was shown in figure 3.

mailto:info@tecplot.com
http://www.tecplot.com/

Tecplot, Inc. info@tecplot.com www.tecplot.com

7

The cubic Lagrangian tetrahedron has 20 nodes: 4 at the corners, two on each of the six edges, and one on each face
as shown in figure 4. The subdivision is chosen so that subcell edges will always align between adjacent elements.
For further subdivision, nodes are added to the mid-point of each sub-element edge and they are subdivided like
quadratic tetrahedra.

Cubic Pyramid Subdivision:

Figure 5. Subdivision of cubic Pyramid into Linear Tetrahedra

As shown in figure 5, the natural subdivision of the cubic pyramid results in 54 sub-tetrahedra. Unfortunately, unlike
the cubic tetrahedron, the cubic pyramid has a quadrilateral face that where the triangulation may not match the
triangulation in the adjacent element (the edges may cross). This can result in small gaps in isosurfaces at that face.

Figure 4. Cubic Tetrahedron Natural Subdivision into Linear Tetrahedra

mailto:info@tecplot.com
http://www.tecplot.com/

Tecplot, Inc. info@tecplot.com www.tecplot.com

8

III. Streamline Algorithm

The streamline algorithm uses a recursive subdivision technique, similar to that used for the isosurface, to find the
subcell containing the current location along the streamline and compute the velocities at that location using linear
interpolation within the subcell. The streamline is then extended a short distance (step size) in the direction of the
velocity and the process repeats. The step size is a fraction of the cell size and the algorithm adjusts the step-size to,
in general, take multiple steps across each cell. The streamline computation takes advantage of the same optimizations
used by the isosurface algorithm.

As the polynomial order of the cell basis function increases, the default step size must decrease to maintain the same
level of accuracy. This process has not currently been automated, but the step size can be adjusted in the user interface.

IV. Optimization

The recursive subdivision is implemented in a way that minimized the amount of computation required.

First, at each level of subdivision, those cells that clearly cannot contain the isosurface (or the x,y,z point, in the case
of probing or a step of a streamline) are eliminated before the next level of subdivision is done. This reduces the
amount of computation and memory usage.

Second, much of the computation of higher-order interpolation weights is done once upfront. This is possible because
the nodes added in the subdivision process are always at the same local coordinate (r,s,t) locations for each cell of a
specific shape and polynomial order. The savings from doing this are substantial. For example, for the quadratic
pyramid, the 𝑙𝑙𝑖𝑖(𝑟𝑟𝑖𝑖 , 𝑠𝑠𝑖𝑖 , 𝑡𝑡𝑖𝑖) weights ware computed just once for each level of subdivision. Then computing the value of
a variable at any node at any subdivision level requires just 14 multiplications and 13 additions for 27 floating point
operations (flops). For comparison, the computation of the weights requires 588 Jacobi polynomial evaluations
(roughly 20 flops each), 3920 other flops, and 2200 flops for the matrix inversion, for a total of roughly 17,900 flops.
If the weights were recomputed every time an interpolation was required, it would be 660 times more computationally
expensive. The tradeoff is that the weights must be stored in memory but, since they are only stored once for each
combination of cell shape, polynomial and subdivision level, the additional memory requirement is fairly small.

It should be noted that the pyramid has the most complicated basis function and therefore shows the most benefit from
this optimization. However, for all 3D basis functions, the computational cost is reduced by at least and order of
magnitude using this optimization. Details operation counts will be given for all basis functions in the final paper.

V. Results

The new isosurface algorithm has been applied to flow around the high-lift configuration of the Common Research
Model (CRM). The data was computed by a high-order FR/CRM code7,8 using a mixture of quadratic prisms,
pyramids, and tetrahedra. The grid contained 84,549,975 nodes and 29,507,246 volume elements.

Figure 6 shows the effect of subdivision levels on the pressure isosurfaces in the region of the nacelle. The left image
is one level of subdivision (the natural subdivision using existing higher-order nodes) and the right is two levels of
subdivision. Note that, for these qualitative plots, it is difficult to see the difference between one and two levels of
subdivision. It is visible if you look carefully, but not obvious.

mailto:info@tecplot.com
http://www.tecplot.com/

Tecplot, Inc. info@tecplot.com www.tecplot.com

9

Figure 6. Pressure isosurface near nacelle of high-lift CRM configuration.

Figure 7 shows the effect of subdivision levels on boundary-layer velocity profiles for the same dataset. Note the
velocity profiles are more sensitive to the number of subdivisions and at least three levels of subdivision are required
at this location to accurately represent the high-order profile.

Figure7. Separated boundary layer velocity profile for CRM high-lift configuration.

mailto:info@tecplot.com
http://www.tecplot.com/

Tecplot, Inc. info@tecplot.com www.tecplot.com

10

The final CRM image, figure 8, shows the computed streamlines in the vicinity of the wing-tip vortex.

Figure 8. Streamlines near the wingtip vortex for CRM high-lift configuration.

Performance Comparison:

The time for the new algorithm to generate the pressure isosurfaces in figure 6 (without the airplane geometry) for
two grid densities are shown in Table 1. Also shown are the time to generate the same isosurface in Paraview 5.11.0
on the same computer9. The test computer is a Dell Precision T7610 with 24 cores (12 physical + 12 hyperthread),
128GB RAM, an NVIDIA Quadro K4000, and Windows 10.

mailto:info@tecplot.com
http://www.tecplot.com/

Tecplot, Inc. info@tecplot.com www.tecplot.com

11

Num Nodes Num Elements Tecplot (CGNS) Tecplot (SZL) Paraview 5.11.0
2,454,672 627,413 5.3 2.5 232
84,549,975 29,507,246 117 32 More than 8 hrs

Table 1. Time, in seconds, to generate the isosurfaces in Figure 6.

Note, only the default (non-mpi) version of Paraview was used. There are, no doubt, versions of Paraview (perhaps
the mpi version) that would generate the isosurfaces more quickly.

VI. Conclusions
A recently developed recursive subdivision algorithm5,6 to compute isosurfaces for higher-order element solutions

has been implemented in the engine of the commercial visualization code Tecplot 360. The algorithm minimizes
memory usage by keeping only sub-elements that contain the isosurface. In the process, the algorithm has been
optimized by precomputing the weights of the basis functions at added nodes of all element shapes, polynomial orders,
and subdivision levels. The algorithm also uses multi-threading parallelism to efficiently use all CPU cores on a
shared-memory workstation. The algorithm has been extended to work with selected cubic elements (tetrahedra and
pyramids) and to accurately and efficiently compute streamlines through the higher-order elements.

The benefits of the algorithm have been demonstrated on quadratic solutions of the flow around the common

research model high-lift configuration. Finally, the performance of the algorithm as implemented in Tecplot 360 has
been shown to be a factor of 40 faster than the default download of a well-know open-source visualization code for
an isosurface in the flow around an airplane configuration.

References
1Slotnick, J., Khodadoust, A., Alonso, J., Darmofal, D., Gropp, W., Lurie, E. and Mavriplis, D., “CFD Vision 2030 Study: A

Path to Revolutionary Computational Data Science,” NASA/CR-2014-218178, 2014.
2Thompson, D.C., and Pebay, P.P., “Visualizing Higher Order Finite Elements: Final Report,” SAND2005-6999, Nov. 2005.
3Remacle, J.-F., Chevaugeon, N., Marchandise, E. and Geuzaine, C., “Efficient visualization of high-order finite elements,” Int.

J. Numer. Meth. Engng, Jul. 2006.
4Chan, J. and Warburton, T., “A Comparison of High-Order Interpolation Nodes for the Pyramid,” SIAM J. Sci. Computing,

Dec. 2014.
5Imlay, S., Taflin, D., and Mackey, C., “Recursive Sub-Division Technique for Higher-Order-Element Isosurface

Visualization,” AIAA 2020-3223, AIAA AVIATION Forum, Jun. 2020.
6Imlay, S., Taflin, D., and Mackey, C., “Recursive Sub-Division Technique for Higher-Order Pyramid and Prism Isosurface

Visualization,” AIAA 2021-1363, AIAA SciTech Forum, Jan. 2021.
7Wang, Z.J., Li, Y., Laskowski, G.M., Kopriva, J., Paliath, U., and Bhaskaran, R., “Toward Industrial Large Eddy Simulation

Using the FR/CPR Method,” Computers and Fluids, Vol. 156, 12, Oct. 2017, pp 579-589.
8Wang, Z.J., “Wall-Modeled Large Eddy Simulation of the NASA CRM High-Lift Configuration with the High-Order FR/CPR

Method,” AIAA Aviation, June 2022.
9http://www.kitware.com/products/paraview.html

mailto:info@tecplot.com
http://www.tecplot.com/

	wp-cover.pdf
	wp_2023_Higher_Order_Isosurfaces.pdf
	Optimized Implementation of Recursive Sub-Division Technique for Higher-Order Finite-Element Isosurface and Streamline Visualization
	I. Introduction
	II. Approach
	A. Related Work
	B. Higher-Order Tetrahedra and Pyramid Basis Functions
	C. Subdivision into Linear Sub-Elements

	III. Streamline Algorithm
	IV. Optimization
	V. Results
	VI. Conclusions
	References

