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Higher-Order finite-element CFD methods have the potential to reduce the computational 
cost to achieve a desired solution error. These techniques have been an area of research for 
many years and are becoming more widely available in popular CFD codes. CFD visualization 
software is lagging behind the development of higher-order CFD analysis codes. This paper 
discusses a technique for visualizing isosurfaces and streamlines in higher-order element 
solutions with reduced memory usage. The technique recursively subdivides higher-order 
elements into smaller linear sub-elements where the isosurface can be extracted using 
standard marching-tets techniques. Memory usage is minimized by discarding unneeded sub-
elements. In a previous paper this technique was demonstrated with higher-order quadratic 
hexahedra, tetrahedra, prism, and pyramid elements with Lagrangian polynomial basis 
functions. In this paper, the technique is extended to cubic elements and streamlines, and 
performance optimization are discussed. The results are compared to other techniques for 
visualization of higher-order element isosurfaces. 
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I. Introduction 
 
The use of higher-order (greater than second order) computational fluid dynamics (CFD) methods is increasing. 
Popular government and academic CFD codes such as FUN3D, KESTREL, and SU2 have released, or are planning 
to release, versions that include higher-order methods. This is because higher-order accurate methods offer the 
potential for better accuracy and stability1, especially for unsteady flows. This trend is likely to continue. 
 
Commercial visual analysis codes are not yet providing full support for higher-order solutions. The CFD 2030 vision 
states “…higher-order methods will likely increase in utilization during this time frame, although currently the ability 
to visualize results from higher order simulations is highly inadequate. Thus, software and hardware methods to handle 
data input/output (I/O), memory, and storage for these simulations (including higher-order methods) on emerging 
HPC systems must improve. Likewise, effective CFD visualization software algorithms and innovative information 
presentation (e.g., virtual reality) are also lacking.” The isosurface algorithm described in this paper is the first step 
toward improving higher-order element visualization in the commercial visualization code Tecplot 360. 
 
Higher-order methods can be based on either finite-difference methods or finite-element methods. While some popular 
codes use higher-order finite-difference methods (OVERFLOW, for example), this paper will focus on higher-order 
finite-element techniques. Specifically, we will present a memory-efficient recursive subdivision algorithm for 
visualizing the isosurface of higher-order element solutions. In previous papers5,6 we demonstrated this technique for 
quadratic tetrahedral, hexahedral, pyramid, and prism elements with Lagrangian polynomial basis functions. In this 
paper we discuss the integration of these techniques into the engine of the commercial visualization code Tecplot 360 
and discuss speed optimizations. We also discuss the extension of the recursive subdivision algorithm to cubic 
tetrahedral and pyramid elements, and quartic tetrahedral elements. Finally, we discuss the extension of the recursive 
subdivision algorithm to the computation of streamlines.  
 
 
 

II. Approach 
 

A. Related Work 
 
Nearly all isosurfacing techniques for higher-order finite-elements involve subdivision of the higher-order element 
into a number of sub-elements which are then processed with standard linear methods. There are a couple of variations 
on subdivision technique. The simplest is to subdivide a specified number of times, adding nodes via interpolation 
using the element’s basis functions, until the isosurface through the set of linear sub-elements sufficiently 
approximates the isosurface through the higher-order element. One example of this approach is the work of Remacle 
et. al.3 where the local refinement is terminated when the “visualization error” is below a desired threshold. A second 
approach is by Thompson and Pebay2 who first add nodes at minima and maxima within the element and on the 
element faces, and then tesselates the resulting existing and new nodes to get a linear subdivision. This technique is 
guaranteed to give a topologically correct isosurface, but the error of the isosurface may still be high and the cost of 
finding minima and maxima is non-trivial.  
 
We use recursive subdivision technique similar to Remacle et. al.3 However, we further minimize the computational 
time by discarding all sub-elements that don’t contain the isosurface. This paper describes the optimized 
implementation of the algorithm described by Imlay et. al.5,6 in the engine of Tecplot 360, the extension of the 
algorithm to cubic and quartic elements, and the extension of the algorithm to the computation of streamlines. 
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B. Higher-Order Tetrahedra and Pyramid Basis Functions 
 
The Lagrangian basis functions for quadratic hexahedral, tetrahedral, prism, and pyramid element types were covered 
in a previous papers5,6. This paper describes the cubic Lagrangian basis functions for the tetrahedra and pyramid 
element types. 
 
Cubic Tetrahedral Basis Functions 
 
The cubic trahedra has 20 nodes as shown in figure 1: fours nodes at the corners and two non-corner nodes on each of 
the six edges. Figure 1 also shows the local coordinate system used to define the basis functions. 
 

 
Figure 1. Cubic tetrahedra nodes and natural coordinates. 

The tetrahedra basis functions are polynomials in the natural coordinates (𝜉𝜉, 𝜂𝜂, 𝜍𝜍) as shown in Figure 1. The cubic 
(p=3) basis functions 𝑁𝑁𝑡𝑡3(𝜉𝜉, 𝜂𝜂, 𝜍𝜍), are defined in terms of the linear (p=1) basis functions, 𝑁𝑁𝑡𝑡1(𝜉𝜉, 𝜂𝜂, 𝜍𝜍), which will be 
described first. The linear basis functions for each node vary linearly from one at that node to zero at the other two 
nodes. So, for node 1, 𝑁𝑁𝑡𝑡11  is one at node 1 and zero at nodes 2, 3, 4. Mathematically: 
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𝑁𝑁𝑡𝑡11 = 1 − 𝜉𝜉 − 𝜂𝜂 −  𝜍𝜍 

𝑁𝑁𝑡𝑡21 = 𝜉𝜉 
𝑁𝑁𝑡𝑡31 = 𝜂𝜂 
𝑁𝑁𝑡𝑡41 = 𝜍𝜍 

 
 
The same rules apply for the cubic basis function: the basis function for a node is one at the node and zero at all other 
nodes. This is satisfied by the equations: 
 

𝑁𝑁𝑡𝑡13 = 9
2� 𝑁𝑁𝑡𝑡11 (𝑁𝑁𝑡𝑡11 − 1

3� )(𝑁𝑁𝑡𝑡11 − 2
3� ) 

𝑁𝑁𝑡𝑡23 = 9
2� 𝑁𝑁𝑡𝑡21 (𝑁𝑁𝑡𝑡21 − 1

3� )(𝑁𝑁𝑡𝑡21 − 2
3� ) 

𝑁𝑁𝑡𝑡33 = 9
2� 𝑁𝑁𝑡𝑡31 (𝑁𝑁𝑡𝑡31 − 1

3� )(𝑁𝑁𝑡𝑡31 − 2
3� ) 

𝑁𝑁𝑡𝑡43 = 9
2� 𝑁𝑁𝑡𝑡41 (𝑁𝑁𝑡𝑡41 − 1

3� )(𝑁𝑁𝑡𝑡41 − 2
3� ) 

𝑁𝑁𝑡𝑡53 = 27
2� 𝑁𝑁𝑡𝑡11 𝑁𝑁𝑡𝑡21 (𝑁𝑁𝑡𝑡11 − 1

3� ) 
𝑁𝑁𝑡𝑡63 = 27

2� 𝑁𝑁𝑡𝑡11 𝑁𝑁𝑡𝑡21 (𝑁𝑁𝑡𝑡21 − 1
3� ) 

𝑁𝑁𝑡𝑡73 = 27
2� 𝑁𝑁𝑡𝑡21 𝑁𝑁𝑡𝑡31 (𝑁𝑁𝑡𝑡21 − 1

3� ) 
𝑁𝑁𝑡𝑡83 = 27

2� 𝑁𝑁𝑡𝑡21 𝑁𝑁𝑡𝑡31 (𝑁𝑁𝑡𝑡31 − 1
3� ) 

𝑁𝑁𝑡𝑡93 = 27
2� 𝑁𝑁𝑡𝑡31 𝑁𝑁𝑡𝑡11 (𝑁𝑁𝑡𝑡31 − 1

3� ) 
𝑁𝑁𝑡𝑡103 = 27

2� 𝑁𝑁𝑡𝑡31 𝑁𝑁𝑡𝑡11 (𝑁𝑁𝑡𝑡11 − 1
3� ) 

𝑁𝑁𝑡𝑡113 = 27
2� 𝑁𝑁𝑡𝑡41 𝑁𝑁𝑡𝑡11 (𝑁𝑁𝑡𝑡11 − 1

3� ) 
𝑁𝑁𝑡𝑡123 = 27

2� 𝑁𝑁𝑡𝑡41 𝑁𝑁𝑡𝑡11 (𝑁𝑁𝑡𝑡41 − 1
3� ) 

𝑁𝑁𝑡𝑡133 = 27
2� 𝑁𝑁𝑡𝑡41 𝑁𝑁𝑡𝑡21 (𝑁𝑁𝑡𝑡21 − 1

3� ) 
𝑁𝑁𝑡𝑡143 = 27

2� 𝑁𝑁𝑡𝑡41 𝑁𝑁𝑡𝑡21 (𝑁𝑁𝑡𝑡41 − 1
3� ) 

𝑁𝑁𝑡𝑡153 = 27
2� 𝑁𝑁𝑡𝑡41 𝑁𝑁𝑡𝑡31 (𝑁𝑁𝑡𝑡31 − 1

3� ) 
𝑁𝑁𝑡𝑡163 = 27

2� 𝑁𝑁𝑡𝑡41 𝑁𝑁𝑡𝑡31 (𝑁𝑁𝑡𝑡41 − 1
3� ) 

𝑁𝑁𝑡𝑡173 = 27𝑁𝑁𝑡𝑡11 𝑁𝑁𝑡𝑡21 𝑁𝑁𝑡𝑡31  
𝑁𝑁𝑡𝑡183 = 27𝑁𝑁𝑡𝑡11 𝑁𝑁𝑡𝑡21 𝑁𝑁𝑡𝑡41  
𝑁𝑁𝑡𝑡193 = 27𝑁𝑁𝑡𝑡21 𝑁𝑁𝑡𝑡31 𝑁𝑁𝑡𝑡41  
𝑁𝑁𝑡𝑡203 = 27𝑁𝑁𝑡𝑡11 𝑁𝑁𝑡𝑡31 𝑁𝑁𝑡𝑡41  

 
 
 
 
Cubic Pyramid Basis Functions 
 
The basis functions for the pyramid are more complicated than for the other element types. This is because the variation 
of the solution along the triangular faces must match the distribution along the faces of adjacent tetrahedra and, at the 
same time, the variation of the solution along the quadrilateral face must match the distribution along the face of an 
adjacent hexahedron. This can’t be done with simple orthogonal polynomial basis functions, so we use rational 
polynomials for the pyramid basis functions. We use the basis functions of Chan and Warburton4. 
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Figure 2. Pyramid Local Coordinates. 

 
The local coordinates for the pyramid are shown in figure 2. Given this, the cubic (N=3) basis functions are  
 

 
 
For cubic (N=3) this results in thirty functions. The above are modal basis functions, meaning that the coefficients of 
the polynomial basis functions are not the solution at the nodes. We wish to have a nodal basis function. 
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C. Subdivision into Linear Sub-Elements 
 

The subdivision for each higher-order pyramid or prism element is as follows: 
 

- Break it into the logical set of linear sub-tetrahedra. 
- If the error too large, create new edge nodes on each of the sub-tetrahedra and subdivide into 8 sub-sub-

tetrahedra as shown in figure 3. Interpolate the solution to these new nodes using the original hexahedron, 
tetrahedron, prism or pyramid basis functions. 
- Repeat until the desired accuracy is obtained. 

 
Figure 3. Subdivision of Quadratic Tetrahedron 

 
 

While the process is the same for all element shapes, the initial subdivision is different. 
 
 
Cubic Tetrahedron Subdivision: 
 
The subdivision of the quadratic tetrahedron was shown in figure 3.  
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The cubic Lagrangian tetrahedron has 20 nodes: 4 at the corners, two on each of the six edges, and one on each face 
as shown in figure 4. The subdivision is chosen so that subcell edges will always align between adjacent elements. 
For further subdivision, nodes are added to the mid-point of each sub-element edge and they are subdivided like 
quadratic tetrahedra. 
 
 
 
 
 
Cubic Pyramid Subdivision:  
 

 
Figure 5. Subdivision of cubic Pyramid into Linear Tetrahedra 

 
As shown in figure 5, the natural subdivision of the cubic pyramid results in 54 sub-tetrahedra. Unfortunately, unlike 
the cubic tetrahedron, the cubic pyramid has a quadrilateral face that where the triangulation may not match the 
triangulation in the adjacent element (the edges may cross). This can result in small gaps in isosurfaces at that face.  
 
 
 
  

Figure 4. Cubic Tetrahedron Natural Subdivision into Linear Tetrahedra 

mailto:info@tecplot.com
http://www.tecplot.com/


 
 

 
Tecplot, Inc.                                 info@tecplot.com     www.tecplot.com  

 

8 

III. Streamline Algorithm 
 

The streamline algorithm uses a recursive subdivision technique, similar to that used for the isosurface, to find the 
subcell containing the current location along the streamline and compute the velocities at that location using linear 
interpolation within the subcell. The streamline is then extended a short distance (step size) in the direction of the 
velocity and the process repeats. The step size is a fraction of the cell size and the algorithm adjusts the step-size to, 
in general, take multiple steps across each cell. The streamline computation takes advantage of the same optimizations 
used by the isosurface algorithm. 
 
As the polynomial order of the cell basis function increases, the default step size must decrease to maintain the same 
level of accuracy. This process has not currently been automated, but the step size can be adjusted in the user interface. 

IV. Optimization 
 
The recursive subdivision is implemented in a way that minimized the amount of computation required.  
 
First, at each level of subdivision, those cells that clearly cannot contain the isosurface (or the x,y,z point, in the case 
of probing or a step of a streamline) are eliminated before the next level of subdivision is done. This reduces the 
amount of computation and memory usage.  
 
Second, much of the computation of higher-order interpolation weights is done once upfront. This is possible because 
the nodes added in the subdivision process are always at the same local coordinate (r,s,t) locations for each cell of a 
specific shape and polynomial order. The savings from doing this are substantial. For example, for the quadratic 
pyramid, the 𝑙𝑙𝑖𝑖(𝑟𝑟𝑖𝑖 , 𝑠𝑠𝑖𝑖 , 𝑡𝑡𝑖𝑖) weights ware computed just once for each level of subdivision. Then computing the value of 
a variable at any node at any subdivision level requires just 14 multiplications and 13 additions for 27 floating point 
operations (flops). For comparison, the computation of the weights requires 588 Jacobi polynomial evaluations 
(roughly 20 flops each), 3920 other flops, and 2200 flops for the matrix inversion, for a total of roughly 17,900 flops. 
If the weights were recomputed every time an interpolation was required, it would be 660 times more computationally 
expensive. The tradeoff is that the weights must be stored in memory but, since they are only stored once for each 
combination of cell shape, polynomial and subdivision level, the additional memory requirement is fairly small. 
 
It should be noted that the pyramid has the most complicated basis function and therefore shows the most benefit from 
this optimization. However, for all 3D basis functions, the computational cost is reduced by at least and order of 
magnitude using this optimization. Details operation counts will be given for all basis functions in the final paper. 
   

 

V. Results 
 
The new isosurface algorithm has been applied to flow around the high-lift configuration of the Common Research 
Model (CRM). The data was computed by a high-order FR/CRM code7,8 using a mixture of quadratic prisms, 
pyramids, and tetrahedra. The grid contained 84,549,975 nodes and 29,507,246 volume elements.  
 
Figure 6 shows the effect of subdivision levels on the pressure isosurfaces in the region of the nacelle. The left image 
is one level of subdivision (the natural subdivision using existing higher-order nodes) and the right is two levels of 
subdivision. Note that, for these qualitative plots, it is difficult to see the difference between one and two levels of 
subdivision. It is visible if you look carefully, but not obvious.  
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Figure 6. Pressure isosurface near nacelle of high-lift CRM configuration. 

 
Figure 7 shows the effect of subdivision levels on boundary-layer velocity profiles for the same dataset. Note the 
velocity profiles are more sensitive to the number of subdivisions and at least three levels of subdivision are required 
at this location to accurately represent the high-order profile.  
 

 
Figure7. Separated boundary layer velocity profile for CRM high-lift configuration. 
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The final CRM image, figure 8, shows the computed streamlines in the vicinity of the wing-tip vortex. 
 

 
Figure 8. Streamlines near the wingtip vortex for CRM high-lift configuration. 

 
 
Performance Comparison: 
 
The time for the new algorithm to generate the pressure isosurfaces in figure 6 (without the airplane geometry) for 
two grid densities are shown in Table 1. Also shown are the time to generate the same isosurface in Paraview 5.11.0 
on the same computer9. The test computer is a Dell Precision T7610 with 24 cores (12 physical + 12 hyperthread), 
128GB RAM, an NVIDIA Quadro K4000, and Windows 10.  
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Num Nodes Num Elements Tecplot (CGNS) Tecplot (SZL)  Paraview 5.11.0 
2,454,672 627,413 5.3 2.5 232 
84,549,975 29,507,246 117 32 More than 8 hrs 

Table 1. Time, in seconds, to generate the isosurfaces in Figure 6. 
 
Note, only the default (non-mpi) version of Paraview was used. There are, no doubt, versions of Paraview (perhaps 
the mpi version) that would generate the isosurfaces more quickly. 
 
 

VI. Conclusions 
A recently developed recursive subdivision algorithm5,6 to compute isosurfaces for higher-order element solutions 

has been implemented in the engine of the commercial visualization code Tecplot 360. The algorithm minimizes 
memory usage by keeping only sub-elements that contain the isosurface. In the process, the algorithm has been 
optimized by precomputing the weights of the basis functions at added nodes of all element shapes, polynomial orders, 
and subdivision levels. The algorithm also uses multi-threading parallelism to efficiently use all CPU cores on a 
shared-memory workstation. The algorithm has been extended to work with selected cubic elements (tetrahedra and 
pyramids) and to accurately and efficiently compute streamlines through the higher-order elements. 

 
The benefits of the algorithm have been demonstrated on quadratic solutions of the flow around the common 

research model high-lift configuration. Finally, the performance of the algorithm as implemented in Tecplot 360 has 
been shown to be a factor of 40 faster than the default download of a well-know open-source visualization code for 
an isosurface in the flow around an airplane configuration.  
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